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Roberto Navigli

Natural Language Processing: Introduction

Your Instructor

• Associate Professor in the Department of Computer 

Science (Sapienza)

• Home page: http://wwwusers.di.uniroma1.it/~navigli 

• Email: navigli@di.uniroma1.it
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What is Natural Language Processing (NLP)?

• The branch of information science that deals with 

natural language information [WordNet]
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But… what is Information Science?

• Information science is an interdisciplinary science 

primarily concerned with the analysis, collection, 

classification, manipulation, storage, retrieval and 

dissemination of information [Wikipedia]
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NLP: an Interdisciplinary Area

• Artificial Intelligence

• Computer Science

• Linguistics

• Psychology

• Logic

• Statistics

• Cognitive science

• Neurobiology

• …
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What is Natural Language Processing II

• The use of natural language by computers as input

and/or output
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language language

computer

Understanding (NLU)

Generation (NLG)
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Natural Language Processing and Artificial Intelligence

• NLP is a branch of Artificial Intelligence (AI)

• Better: NLP is the branch of AI dealing with human language

• Intelligence comprises capacities for:
– Abstract thought

– Understanding

– Communication

– Reasoning

– Learning

– Planning

– Emotions

– Problem solving

• How do we know whether a living being/system is 

intelligent?

• Idea: use language to test!
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Turing Test (1950)

• A test of a machine’s ability to demonstrate intelligence

• Introduced in 1950 by Alan Turing

• "I propose to consider the question, 'Can machines 

think?'" Since "thinking" is difficult to define, Turing 

chooses to "replace the question by another, which is 

closely related to it and is expressed in relatively 

unambiguous words. […] Are there imaginable digital 

computers which would do well in the imitation game?"

– Alan Turing, “Computing Machinery and Intelligence” (1950)

• Inspired by a party game, known as the “imitation game" 

(a man vs. a woman)
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Turing Test (1950)

• A test of a machine’s ability to demonstrate intelligence
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Human Player Computer Player

Human judge

Turing Test (1950)

• A human judge engages in a (written) natural language 

conversation with one human and one machine

• The players try to appear human

• All participants are separated from each another 

• The judge tries to determine which player is a computer

and which is a human

• Assumption: NLP is AI-complete!

• In other words, if we solve NLP, we are able to solve AI
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ELIZA (1966)

• An early example of computer program performing 

primitive natural language processing

– Written at MIT by Joseph Weizenbaum (1966)

• Processes human replies to questions

• Uses simple parsing and substitutes keywords into 

template phrases
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Loebner Prize Gold Medal

• $100,000 and a Gold Medal for the first computer whose 

responses were indistinguishable from a human's

• http://www.loebner.net/Prizef/loebner-prize.html
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The Chinese Room (1980)

• John Searle argued against the Turing Test in his 1980 

paper “Minds, Brains and Programs”

• Programs (e.g., ELIZA) could pass the Turing Test 

simply by manipulating symbols they do not understand

• Assume you act as a computer by manually executing a 

program that simulates the behavior of a native Chinese 

speaker
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The Chinese Room (1980)

• Assume you are in a closed room with a book 

containing the computer program

• You receive Chinese characters through a slot in the 

door and process them according to the program’s 

instructions and produce Chinese characters as output 

• Would this mean that you understand?

• Would it mean you can 

speak Chinese? 

• "I can have any formal program 

you like, but I still understand 

nothing."
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What knowledge does HAL 9000 need?

• HAL (Heuristically programmed ALgorithmic 

computer)

Dave Bowman: Hello, HAL. Do you read me, HAL? 

HAL: Affirmative, Dave. I read you. 

Dave Bowman: Open the pod bay doors, HAL. 

HAL: I'm sorry, Dave. I'm afraid I can't do that. 

Dave Bowman: What's the problem? 

HAL: I think you know what the problem is just as well as I do. 

Dave Bowman: What are you talking about, HAL? 

HAL: This mission is too important for me to allow you to 

jeopardize it. 

Dave Bowman: I don't know what you're talking about, HAL.
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semantics

discourse

syntax phonetics & 

phonology

morphology

pragmatics

http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/
http://www.imdb.com/name/nm0706937/
http://www.imdb.com/name/nm0001158/


10

• The answer is: ambiguity at the different levels of 

language

• Consider: “I made her duck”

1. I cooked an animal for her

2. I cooked an animal belonging to her

3. I created the (plaster?) duck she owns

4. I caused her to quickly lower her head or body

5. I magically transformed her into a duck [ditransitive]

• Further ambiguity of spoken language: 

“eye made her duck”…

transitive or 

ditransitive?

create, cook 

or lower?

dative or 

possessive 

pronoun?

verb or noun?

Why is NLP so hard?
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The aim of NLP

• Resolving such ambiguities by means of computational 

models and algorithms

• For instance:

– part-of-speech tagging resolves the ambiguity between duck as 

verb and noun

– word sense disambiguation decides whether make means 

create or cook

– probabilistic parsing decides whether her and duck are part of 

the same syntactic entity
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Why Aren’t We All Talking With Our Devices Yet?

• “Because it takes more than just understanding a 

bunch of words to provide a good voice user interface 

— especially on a mobile phone. We have to 

understand intent. But there are other factors at play 

here besides the technology of speech: output, 

interaction, and context.” [Chris Schmandt, MIT Media 

Lab]
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Examples of the importance of NLP

1. Machine Translation
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Computer-Assisted Translation (CAT)
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Examples of the importance of NLP

2. Text Summarization
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Examples of the importance of NLP

3. Personal assistance

27/04/2015Natural Language Processing: An Introduction

Roberto Navigli

Pagina 29

Examples of the importance of NLP

4. Information Extraction / Machine Reading
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Examples of the Importance of NLP
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5. Question Answering (e.g. the IBM Watson system)

Examples of the importance of NLP
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6. Information Retrieval
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I need to reason…
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Acetaminophen

Painkiller Upset stomach

Stomach problem

not

not

is-ais-a

Natural Language Processing in Brief

• Morphological Analysis

• Language modeling

• Part-of-speech tagging

• Syntactic Parsing

• Computational Lexical Semantics

• Statistical Machine Translation

• Discourse and Dialogue

• Text Summarization

• Question Answering

• Information Extraction and Text Mining

• Speech Processing
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We are talking about words!
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What are words?

• Basic building block of language

• Every human language, either spoken or written, is 

composed of words

• A word is the smallest free form that can be uttered in 

isolation with semantic and pragmatic content

• Made up of morphemes (smallest component of word

that has semantic meaning)

– tree

– tree+s

– sub+tree

– un+important

affixes

root
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We need to perform a morphological analysis

• “Morphology is the study of the way words are built up 

from smaller meaning-bearing units” (Jurafsky & Martin, 

2000)

• The meaning-bearing units are called morphemes

• Two main types of morphemes:

– Stem or root: the main morpheme of a word

– Affixes: prefixes (re-write), suffixes (beauti-ful-ly), infixes and 

circumfixes

• In  order to detect these components we need to 

perform morphological parsing
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The concept of parsing

Structure for the inputInput
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Morphological Parsing

• What do we need to build a morphological parser?

Input Morphologically Parsed Output

beagles beagle +N +PL

cities city +N +PL

buy buy +N +SG or buy +V

buying buy +V +PRES-PART

bought buy +V +PAST-PART or buy +V +PAST

27/04/2015NLP: Regular Expressions, Automata and Morphology
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Ingredients for a Morphological Parser

Stem Part of speech

beach N

beachwards ADV

beachwear N

beachy ADJ

beacon N

• Lexicon: the list of stems and affixes

• Morphotactics: the model of morpheme ordering in 

the language of interest (e.g., main stem+plural)

• Orthographic rules: spelling rules about how 

morphemes combine to form a word (e.g., city +s  

-> cities)
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• Lexicon: the list of stems and affixes

• Morphotactics: the model of morpheme ordering in 

the language of interest (e.g., main stem+plural)

• Orthographic rules: spelling rules about how 

morphemes combine to form a word (e.g., city +s  

-> cities)

Ingredients for a Morphological Parser

Stem Part of speech

beach N

beachwards ADV

beachwear N

beachy ADJ

beacon N
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Three levels: lexical, intermediate and surface level

Lexical level b e a g l e +N +PL

Intermediate level b e a g l e + s

Surface level b e a g l e s

…

Lexicon FST

Orthographic rules

G
E

N
E

R
A

T
IO

N

P
A

R
S

IN
G
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Morphological Parsing with Finite State Transducers

• We would like to keep distinct the surface and the 

lexical levels

• We need to build mapping rules between concatenation 

of letters and morpheme+feature sequences

• A finite-state transducer implements two-level 

morphology and maps between one set of symbols to 

another

– Done using a (two-tape) finite-state automaton

– Recognizes or generates pairs of strings

Lexical level b e a g l e +N +PL

Surface level b e a g l e s
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Morphological Parsing with FSTs

• +s$ means: 

– “+” (morpheme boundary), “s” (the morpheme), “$” word 

boundary

Morpheme boundary
Word boundary

“feasible pair”
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But: Just  concatenating morphemes doesn’t always work!

• box+s = boxs, rather than boxes

• boxes woudn’t be recognized!

• Why? Because of a spelling change at morpheme 

boundaries

• We need to introduce spelling (or orthographical) rules

– And implement these rules as FSTs

Rule Description Example

Consonant doubling 1 consonant doubled before –

ing or –ed

beg/begging, 

embed/embedded

E deletion e taken out before –ing or -ed make/making

E insertion e added after –s, -z, -x, -ch, -

sh before s

watch/watches

Y replacement -y replaced by –ies before –s, 

-i before -ed

try/tries, try/tried, 

city/cities
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Example: transducer for the “E insertion" rule

• So one can build a transducer for each spelling and 

orthographical rule

• For example: foxes -> fox+s 

(q0 -> q0 -> q1 -> q2 -> q3 -> q4 -> q0)
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Where do we go from here?

• We are now able to process text at the morphological 

level

• We can work on word combinations

• For instance, from The Telegraph:

– Escort claims Berlusconi's 'bunga bunga' parties full of young…

• What comes next?

– Old women? Boys? Girls?

– It depends! On what?
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1-grams (unigrams): just a single word

• Absolute count of each word (e.g. on the Web):
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2-grams (bigrams): sequences of two words

• Absolute count of two words (e.g. on the Web):
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3-grams (trigrams): sequences of 3 words
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Word prediction and N-gram models

• We can create language models, called N-gram models

– they predict the next word from the previous N-1 words

– they define probability distributions over strings of text

• Useful in:

– Speech recognition

– Handwriting recognition

– Machine translation

– Spelling correction

– Part-of-speech tagging
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Simple N-grams

• Our aim is to compute the probability of a word given 

some history:

P(w|h)

• For instance:

– P(rapa|qui non l’ha capito nessuno che questa è una) =

C(qui non l’ha capito nessuno che questa è una rapa)/

C(qui non l’ha capito nessuno che questa è una)

• How easily can we calculate this probability?
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1) It depends on the corpus

• With a large corpus, such as the Web, we can compute 

these counts

• But: try yourself!

• Bad luck?

• The Web is not big enough (!) to provide good estimates 

for most counts
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2) Language is infinite

• You are a good student

– About 4,630,000 results (0.19 seconds)

• You are a very good student

– About 2,040,000 results (0.36 seconds)

• You are a very very good student

– 7 results (0.26 seconds)

• You are a very very very good student

– 1 result (0.25 seconds)

• You are a very very very very good student

– 0 results!
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Too good 

for the 

Web!
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So what is a language model?

A language model is a probability distribution over word 

sequences

• P(“You are a good student”) will be high

• P(“You are a very very very very good student”) will be 

very low
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We need to estimate probabilities

• Chain rule of probability:

• Not enough - we need to approximate:

• Independence assumption: Markov assumption of order 

N-1

• How to estimate these bigram probabilities (N=2)?
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Calculating the Relative Frequency Estimate

• Bracket sentences with <s> and </s>

• Count the frequency of each bigram

• We estimate the bigram probabilities by normalizing 

counts from a corpus:

• General case with N-gram probabilities:
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Bigram Models are Markov chains
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la

il

<s>

hai

cane

gatto

casa

finestra

…

…

<s> il … cane

<s> 0 0.3 … 0.01

il 0 0 … 0.2

… 0 … … …

cane 0 0.1 … 0.01

A random process usually characterized as memoryless: the next state 

depends only on the current state
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• Why do we need word classes?

• They give important information about the word and its 

neighbours

• He is running the race          He decided to race for the job         

Word classes / Parts Of Speech (POS) / Lexical Tags

27/04/2015NLP: Part-of-Speech tagging
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Word classes / Parts Of Speech (POS) / Lexical Tags

• Why do we need word classes?

• They give important information about the word and its 

neighbours

• Useful for recognizing speech and 

correcting spelling errors:

– What is likely to come after an adjective? 

– a verb? a preposition? a noun?

27/04/2015NLP: Part-of-Speech tagging

Roberto Navigli

Pagina 69



30

Part-of-Speech Tagging

• It consists of assigning a part-of-speech tag to each 

word in a text automatically
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POS Tagger
Sequence

of words

Tagset

POS-tagged 

sequence

Part-of-Speech Ambiguity

• Unfortunately, the same word can be tagged with 

different POS tags:

– How to increase the water pressure from a well?

– Tears well in her eyes

– The wound is nearly well

– The party went well

• Part-of-Speech tagging is a disambiguation task!
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An Example: an English sentence
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Stochastic Part-of-Speech Tagging (since 1970s)

• Stochastic POS tagging uses probabilities to tag

• Idea: use Hidden Markov Models to select the most-

likely tags for a given sequence of words

• But how can we calculate these probabilities?
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Holy Bayes!

• Remember?

• Let’s apply Bayes’ Theorem to our formula:

• Still hard to compute!
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HMM taggers make two simplifying assumptions

1) The probability of a word depends only on its own part-

of-speech tag

2) The probability of a tag appearing depends only on the 

previous tag (bigram assumption)
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The two simplifying assumptions in action

• Now we can easily estimate these two probabilities from 

a part-of-speech tagged corpus
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Estimating Conditional Probabilities for Tags
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Estimating Conditional Probabilities for Words
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• Examples:
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An Example

• You can book your flight

─ P(book|VB)=0.0004

─ P(book|NN)=0.0002

─ P(VB|MD)=0.5

─ P(NN|MD)=0.001

─ So what is the most likely tag for book?
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Another Example from Jurafsky & Martin 2008

• How to choose the correct global tagging sequence?
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Differences in bold

Hidden Markov Models (HMM)

• A HMM allows us to talk both about observed events 

(word sequence in input) and unobserved (hidden) 

events (part-of-speech tags) that are causal factors in 

our probabilistic model

27/04/2015NLP: Part-of-Speech tagging

Roberto Navigli

Pagina 83

P(aardvark|VB)

…

P(race|VB)

…

P(to|VB)

…

P(zebra|VB)

P(aardvark|TO)

…

P(race|TO)

…

P(to|TO)

…

P(zebra|TO)

P(aardvark|NN)

…

P(race|NN)

…

P(to|NN)

…

P(zebra|NN)
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Go to the Machine Learning class!!!
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So far about word ordering…

• Morphological analysis: Finite-state transducers

• N-gram models: Computing probabilities for word 

sequences

• Part-of-speech classes: equivalence classes for words

• We now move to… formal grammars!
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Example

• Se una notte d’inverno un viaggiatore

• *Se notte una d’inverno un viaggiatore

• Una notte se d’inverno un viaggiatore

• *Se un notte d’inverno una viaggiatore

• Se una notte un viaggiatore d’inverno

• Se un viaggiatore d’inverno una notte

• *Se un una notte viaggiatore d’inverno

• *Se un una d’notte viaggiatore inverno

• ~Se un inverno d’notte un viaggiatore

• Se d’inverno un viaggiatore una notte 

• Se d’inverno una notte un viaggiatore

• …
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Context-Free Grammars (CFGs)

• A context-free grammar (CFG) or phrase-structure 

grammar is a formal grammar defined as a 4-tuple:

G = (N, T, P, S) 

• where:

– N is the set of nonterminal symbols (phrases or clauses)

– T is the set of terminal symbols (lexicon)

– P is the set of productions (rules), a relation  N(NT)*

– S is the start symbol such that S  N, (S, )  P
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Example

• N = { S, NP, Nom, Det, Noun },

• T = { a, the, winter, night },

• P = {

S  NP

NP  Det Nom

Nom  Noun | Nom Noun

Det  a | the

Noun  winter

Noun  night

},

• S
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CFG as tools for…
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S

NP

Det Nom

a Nom Noun

Noun

winter

night

Parse tree

NLP: Syntax

Roberto Navigli

• Generating sentences

– G generates “a winter night”

– There exists a derivation (sequence of rule expansions)

• Assigning a structure to a sentence

– What is the structure for “a winter night”? 
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Treebanks

• CFGs can be used to assign a parse tree to any 

valid sentence

• We can build a corpus, called treebank, whose 

sentences are annotated with parse trees

• The most popular project of this kind is the Penn 

Treebank

– From the Brown, Switchboard, ATIS and Wall Street Journal 

corpora of English

• Wall Street Journal: 1.3 million words

• Brown Corpus: 1 million words

• Switchboard: 1 million words

– All tagged with Part of Speech & syntactic structure

– Developed 1988-1994
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“That cold, empty sky was full of fire and light.”
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Viewing Treebanks as Grammars

• The sentences in a treebank can be viewed as a 

grammar of the language

• We can extract the rules from the parsed sentences

• For example:

– NP  DT JJ NN

– NP  DT JJ NNS

– NP  DT JJ NN NN

– NP  DT JJ CD NNS

– NP  RB DT JJ NN NN

– NP  RB DT JJ JJ NNS

– NP  DT JJ JJ NNP NNS
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Cardinal number

Adverb

Proper noun, sing.

Syntactic Parsing
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Syntactic ParserSentence

CFG

• The task of recognizing a sentence and assigning a 

syntactic structure to it

• However: CFGs do not specify how to calculate the 

parse tree for a sentence

did

they thing

the right

nsubj dobj

det mod

NLP: Syntax

Roberto Navigli
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The Cocke-Kasami-Younger (CKY) Algorithm

• A bottom-up dynamic programming parsing approach

• Takes as input a CFG in Chomsky Normal Form

• Given a sentence of n words, we need an (n+1)x(n+1) 

matrix

• Cell (i,j) contains the set of non-terminals that produce 

all the constituents spanning positions from i to j of the 

input sentence

• The cell that represents the entire sentence is (0,n)

• Main idea: if a non-terminal A is in (i,j), there is a 

production A  B C, so there must be an intermediate 

position k with B in (i,k) and C in (k,j)
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Example of CKY Table [from Jurafsky & Martin book]
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Example of CKY Table [from Jurafsky & Martin book]
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Example of CKY Table [from Jurafsky & Martin book]
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Probabilistic (or Stochastic) CFGs

• First proposed by Taylor Booth (1969)

• In a probabilistic CFG G = (N, T, P, S), each production 

A  w [p]

is assigned a probability p = P(w|A) = P(A  w)

• For each left-hand-side non-terminal A, it must hold:
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 
w

wAP 1)(

An Example of PCFG (from Jurafsky & Martin)
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Meaning, meaning, meaning!

27/04/2015NLP: Semantics
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• We are now moving from syntax to semantics

Meaning, meaning, meaning!
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• We are now moving from syntax to semantics
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Word Senses

• The meaning of a word depends on the context in which 

it occurs
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Word Senses

• The meaning of a word depends on the context in which 

it occurs

• We call each meaning of a word a word sense

27/04/2015NLP: Semantics
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plane

…
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Word Senses in Context

• I am catching the earliest plane to Brussels.

• This area probably lies more on the spiritual plane

than the mental one. 

• Let’s represent three-dimensional structures on 

a two-dimensional plane

27/04/2015NLP: Semantics
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WordNet [Miller et al. 1990]

• The most popular computational lexicon of English

– Based on psycholinguistic theories

• Concepts expressed as sets of synonyms (synsets)

– { carn
1, auton

1, automobilen
1, machinen

4, motorcarn
1 }

• A word sense is a word occurring in a synset

– machinen
4 is the fourth sense of noun machine

27/04/2015NLP: Semantics
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WordNet: the “car” example

27/04/2015NLP: Semantics
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WordNet provides textual definitions

• Called glosses

• A textual definition is provided for each synset

• Gloss of carn
1:

– “a 4-wheeled motor vehicle; usually propelled by an 

internal combustion engine; ‘he needs a car to get to 

work’ ”

• Gloss of carn
2:

– “a wheeled vehicle adapted to the rails of railroad; 

‘three cars had jumped the rails’ ”

• Also available in quasi-logical form

27/04/2015NLP: Semantics
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WordNet encodes relations!

• Semantic relations between synsets

– Hypernymy (carn
1 is-a motor vehiclen

1)

– Meronymy (carn
1 has-a car doorn

1)

– Entailment, similarity, attribute, etc.

• Lexical relations between word senses

– Synonymy (i.e., words that belong to the same synset)

– Antonymy (gooda
1 antonym of bada

1)

– Pertainymy (dentala
1 pertains to toothn

1)

– Nominalization (servicen
2 nominalizes servev

4)

27/04/2015NLP: Semantics
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WordNet as a Graph

{wheeled vehicle}

{self-propelled vehicle}

{motor vehicle} {tractor}

{car,auto, automobile,

machine, motorcar}

{convertible}

{air bag}

is-a

is
-a

is-a

is-a

is
-a

h
as

-p
ar

t

{golf cart,

golfcart}

is
-a

{wagon,

waggon}

is-
a

{accelerator,

accelerator pedal,

gas pedal, throttle}

has-part

{car window}

has-part

{locomotive, engine,

locomotive engine,

railway locomotive}

is-a

{brake}has-part

{wheel}

has-part

{splasher}

has-part

synsets

semantic relation
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But WordNet is more than Simply a Graph!

• It is a semantic network!

• A semantic network is a network which represents 

semantic relations among concepts

• It is often used as a form of knowledge representation
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Word Sense Disambiguation (WSD)

• WSD is the task of computationally determining which 

sense of a word is activated by its use in a particular 

context [Ide and Véronis, 1998; Navigli, 2009]

• It is basically a classification task

– The objective is to learn how to classify words into word senses

– This task is strongly tied to Machine Learning

I drank a cup of chocolate at the bar

, ,, ,…bar =

NLP: Word Sense Disambiguation

Roberto Navigli
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Supervision and Knowledge

knowledge-richknowledge-poor

fully unsupervised

           supervised

minimally-supervised and

semi-supervised methods

fully-unsupervised methods

supervised

classifiers

gloss overlap

structural

approaches

domain-driven

approaches

   word

   sense

dominance

knowledge

su
p

e
r
v

is
io

n

unsupervised

domain-driven

approaches

NLP: Word Sense Disambiguation
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Supervised WSD: Support Vector Machines

• SVM learns a linear hyperplane from the training set 

that separates positive from negative examples

• The hyperplane maximizes the distance to the closest 

positive and negative examples (support vectors)

• Achieves state-of-the-art performance in WSD [Keok 

and Ng, 2002]

w
x+b = 0

w

x1

x2

NLP: Word Sense Disambiguation

Roberto Navigli
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Knowledge-based Word Sense Disambiguation

waiter served white portThe
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N

waiter#1

waiter#2

serve#5

serve#15

white#1

white#3

port#2

port#1

N

N

N

fortified wine#1

wine#1

N

white

wine#1

N

beverage#1
N

alcohol#1

N

N

person#1

player#1
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d
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e
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 s
e
n
s
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f 
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s
t

#1 #5 #3 #2

Knowledge-based Word Sense Disambiguation
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BabelNet [Navigli and Ponzetto, AIJ 2012]

• A wide-coverage multilingual semantic network 

including both encyclopedic (from Wikipedia) and 

lexicographic (from WordNet) entries

Concepts from WordNetNEs and specialized 

concepts from Wikipedia

Concepts integrated from 

both resources

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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BabelNet as a Multilingual Inventory for:

Concepts

Calcio in Italian can denote different concepts:

Named Entities

The word Mario can be used to represent different things 

such as the video game charachter or a soccer player 

(Gomez) or even a music album

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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BabelNet 3.0 is online: http://babelnet.org

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Anatomy of BabelNet 3.0

• 271 languages covered (including Latin!)

• 13.8M Babel synsets

– (6.4M concepts and 7.4M named entities) 

• 117M word senses

• 355M semantic relations (26 edges per synset on avg.)

• 11M synset-associated images

• 40M textual definitions

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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• Seamless integration of:

• WordNet 3.0

• Wikipedia

• Wikidata

• Wiktionary

• OmegaWiki

• Open Multilingual WordNet [Bond and Foster, 2013]

• Translations for all open-class parts of speech

• 2B RDF triples available via SPARQL endpoint

New 3.0 version out!

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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So what?

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 1: Semantic Signatures

striker

offside

athlete

sport
soccer player

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 2: Find all possible meanings of words

1. Exact Matching (good for WSD, bad for EL)

Thomas and Mario are strikers playing in Munich

Thomas, 

Norman Thomas, 

Seth 

They both have 

Thomas as one of 

their lexicalizations

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 2: Find all possible meanings of words

2. Partial Matching (good for EL)

Thomas and Mario are strikers playing in Munich

Thomas, 

Norman Thomas, 

Seth

Thomas 

Müller

It has Thomas as a 

substring of one of 

its lexicalizations

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 2: Find all possible meanings of words

• “Thomas and Mario are strikers playing in Munich”

Thomas (novel)

Seth Thomas

Thomas Müller

Mario Gómez

Mario (Album)

Mario (Character)

Striker (Movie)

Striker (Video Game)

striker (Sport)
Munich (City)

FC Bayern Munich

Munich (Song)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 2: Find all possible meanings of words

• “Thomas and Mario are strikers playing in Munich”

Thomas (novel)

Seth Thomas

Thomas Müller

Mario Gómez

Mario (Album)

Mario (Character)

Striker (Movie)

Striker (Video Game)

striker (Sport)
Munich (City)

FC Bayern Munich

Munich (Song)

Ambiguity!

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 3: Connect all the candidate meanings

• Thomas and Mario are strikers playing in Munich

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 4: Extract a dense subgraph

• Thomas and Mario are strikers playing in Munich

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 4: Extract a dense subgraph

• Thomas and Mario are strikers playing in Munich

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 5: Select the most reliable meanings

• Thomas and Mario are strikers playing in Munich

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Step 5: Select the most reliable meanings

• “Thomas and Mario are strikers playing in Munich”

Thomas (novel)

Seth Thomas

Thomas Müller

Mario Gómez

Mario (Album)

Mario (Character)

Striker (Movie)

Striker (Video Game)

striker (Sport)
Munich (City)

FC Bayern Munich

Munich (Song)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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http://babelfy.org

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Charlie Hebdo gun attack (English)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Charlie Hebdo gun attack (English)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli

The Charlie Hebdo gun attack (English)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Charlie Hebdo gun attack (Italian) 

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Charlie Hebdo gun attack (Italian) 
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The Charlie Hebdo gun attack (Italian)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy
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The Charlie Hebdo gun attack (French)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Charlie Hebdo gun attack (French)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli

The Wikipedia structure: an example

Pages Categories

Mickey Mouse

Funny Animal
Superman

Cartoon

Donald Duck

Disney comics

characters

Disney comicsDisney character

Fictional characters

by medium
Comics by 

genre

Fictional

characters

The Walt Disney 

Company

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli

159



65

Our goal

To automatically create a Wikipedia Bitaxonomy 

for Wikipedia pages and categories in a 

simultaneous fashion.

pages categories

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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Our goal

To automatically create a Wikipedia Bitaxonomy 

for Wikipedia pages and categories in a 

simultaneous fashion.

The page and category level are mutually 

beneficial for inducing a wide-coverage

and fine-grained integrated taxonomy

KEY IDEA

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Wikipedia Bitaxonomy: an example

Pages Categories

Disney comics

characters

Disney comicsDisney character

The Walt Disney 

Company

Fictional characters

by medium
Comics by 

genre

Fictional

characters

Mickey Mouse

Funny Animal
Superman

Cartoon

Donald Duck
is a

is a

is a is a

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The WiBi Page 

taxonomy1
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Assumption

• The first sentence of a page is a good definition

(also called gloss)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The WiBi Page taxonomy

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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1. [Syntactic step]

Extract the hypernym lemma

from a page definition using 

a syntactic parser;

2. [Semantic step]

Apply a set of linking 

heuristics to disambiguate

the extracted lemma.

Scrooge McDuck is a character […]

Syntactic step

Hypernym lemma: character

A
Semantic step

Scrooge McDuck is a character[…]

nn nsubj

cop



68

The story so far

1

Noisy page graph Page taxonomy

2
The Bitaxonomy

algorithm
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The Bitaxonomy algorithm

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The information available in the two taxonomies 

is mutually beneficial

• At each step exploit one taxonomy to update 

the other and vice versa

• Repeat until convergence

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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pages categories

Real Madrid

F.C.

Football team Football teams

Football clubs

in Madrid

Atlético Madrid
Football clubs

Starting

from the 

page

taxonomy

The Bitaxonomy algorithm
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BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Bitaxonomy algorithm

Real Madrid

F.C.

Football team Football teams

Football clubs

in Madrid

Football clubs

Exploit the cross links to infer hypernym relations in the category taxonomy

Atlético Madrid

pages categories

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy
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The Bitaxonomy algorithm

Real Madrid

F.C.

Football team Football teams

Football clubs

in Madrid

Football clubs

Take advantage of cross links to infer back is-a relations in the page taxonomy

Atlético Madrid

pages categories
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BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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The Bitaxonomy algorithm

Real Madrid

F.C.

Football team Football teams

Football clubs

in Madrid

Football clubs

Use the relations found in previous step to infer new hypernym edges

Atlético Madrid

pages categories

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy
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The Bitaxonomy algorithm

Atlético Madrid
Real Madrid

F.C.

Football team Football teams

Football clubs

in Madrid

Football clubs

Mutual enrichment of both taxonomies until convergence

pages categories
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wibitaxonomy.org

Example from http://wibitaxonomy.org: WordNet

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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http://wibitaxonomy.org/
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Example from http://wibitaxonomy.org: Wikipedia

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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THAT’S ALL FOLKS!!!

(Isn’t it enough???)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy

Roberto Navigli
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http://wibitaxonomy.org/
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27/04/2015BabelNet & friends 

Roberto Navigli
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Thanks or…

m     i
(grazie)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy
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