Natural Language Processing: Introduction

Roberto Navigli

Dipartimento di Informatica

Your Instructor

- Associate Professor in the Department of Computer Science (Sapienza)
- Home page: http://www.sers.di.uniroma1.it/~navigli
- Email: navigli@di.uniroma1.it

What is Natural Language Processing (NLP)?

• The branch of information science that deals with <u>natural language</u> information [WordNet]

But... what is Information Science?

 Information science is an interdisciplinary science primarily concerned with the analysis, collection, classification, manipulation, storage, retrieval and dissemination of information [Wikipedia]

NLP: an Interdisciplinary Area

- Artificial Intelligence
- Computer Science
- Linguistics
- Psychology
- Logic
- Statistics
- Cognitive science
- Neurobiology
- ...

What is Natural Language Processing II

• The use of natural language by computers as input and/or output

Natural Language Processing and Artificial Intelligence

- NLP is a branch of Artificial Intelligence (AI)
- · Better: NLP is the branch of AI dealing with human language
- Intelligence comprises capacities for:
 - Abstract thought
 - Understanding
 - Communication
 - Reasoning
 - Learning
 - Planning
 - EmotionsProblem solving
 - How do wo know whath
- How do we know whether a living being/system is intelligent?
- Idea: use language to test!

Natural Language Processing: An Introduction Roberto Navigli	27/04/2015	Pagina 10

Turing Test (1950)

- · A test of a machine's ability to demonstrate intelligence
- Introduced in 1950 by Alan Turing
- "I propose to consider the question, 'Can machines think?'" Since "thinking" is difficult to define, Turing chooses to "replace the question by another, which is closely related to it and is expressed in relatively unambiguous words. [...] Are there imaginable digital computers which would do well in the imitation game?"
 - Alan Turing, "Computing Machinery and Intelligence" (1950)
- Inspired by a party game, known as the "imitation game" (a man vs. a woman)

Turing Test (1950)

· A test of a machine's ability to demonstrate intelligence

Turing Test (1950)

- A human judge engages in a (written) natural language conversation with one human and one machine
- The players try to appear human
- · All participants are separated from each another
- The judge tries to determine which player is a computer and which is a human
- Assumption: NLP is AI-complete!
- In other words, if we solve NLP, we are able to solve AI

ELIZA (1966)

- An early example of computer program performing primitive natural language processing

 Written at MIT by Joseph Weizenbaum (1966)
- · Processes human replies to questions
- Uses simple parsing and substitutes keywords into template phrases

Natural Language Processing: An Introduction Roberto Navigli	27/04/2015	Pagina 14

Loebner Prize Gold Medal

- \$100,000 and a Gold Medal for the first computer whose responses were indistinguishable from a human's
- http://www.loebner.net/Prizef/loebner-prize.html

The Chinese Room (1980)

- John Searle argued against the Turing Test in his 1980 paper "Minds, Brains and Programs"
- Programs (e.g., ELIZA) could pass the Turing Test simply by manipulating symbols they do not understand
- Assume you act as a computer by manually executing a program that simulates the behavior of a native Chinese speaker

The Chinese Room (1980)

- Assume you are in a closed room with a book containing the computer program
- You receive Chinese characters through a slot in the door and process them according to the program's instructions and produce Chinese characters as output
- Would this mean that you understand?
- Would it mean you can speak Chinese?
- "I can have any formal program you like, but I still understand nothing."

The science fiction dream!

Why is NLP so hard?

- The answer is: ambiguity at the different levels of language
- Consider: "I made he<u>r duck"
 dative or
 </u>
 - 1. I cooked an animal terret possessive pronoun?
 - 2. I cooked an animal belonging to ber or lower?
 - 3. I created the (plaster?) duck she owns transitive or
 - 4. I caused her to quickly lower her head or bo
 - 5. I magically transformed her into a duck [ditransitive]
- Further ambiguity of spoken language:
 "eye made her duck"...

The aim of NLP

- Resolving such ambiguities by means of computational models and algorithms
- For instance:
 - part-of-speech tagging resolves the ambiguity between duck as verb and noun
 - word sense disambiguation decides whether make means create or cook
 - probabilistic parsing decides whether *her* and *duck* are part of the same syntactic entity

Pagina 24

Why Aren't We All Talking With Our Devices Yet?

 "Because it takes more than just understanding a bunch of words to provide a good voice user interface — especially on a mobile phone. We have to understand intent. But there are other factors at play here besides the technology of speech: output, interaction, and context." [Chris Schmandt, MIT Media Lab]

Examples of the importance of NLP

1. Machine Translation

Computer-Assisted Translation (CAT)

Examples of the importance of NLP

2. Text Summarization

Examples of the importance of NLP

3. Personal assistance

Google Now. Le informazioni giuste al momento giusto.

Examples of the importance of NLP

4. Information Extraction / Machine Reading

Examples of the importance of NLP

Google	Painkillers that don't upset stomach
	Web Shopping Images News Videos More ▼ Search tools
	About 1,070,000 results (0.35 seconds) <u>Which painkiller? - Live Well - NHS Choices</u> www.nhs.uk/Livewell/Pain//Whichpainkiller.as National Health Service ~ If you take them for long periods, there's an increased risk of stomach upset, including bleeding, and kidney and heart problems. Don't take more than the
	Are there any anti-inflammatory drugs that don't have stomach www.arthritisresearchuk.org//any-nsaids-without Arthritis Research UK ~ Are there any anti-inflammatory drugs that don't have stomach-related side-effects? Do you know of any anti-inflammatories I can take that won't upset my ulcers In these situations we recommend painkillers such as the one you are taking.
	Any pain relievers that don't upset the stomach if taken often www.godlikeproductions.com/forum1/message1121319/pg1 - Jul 3, 2010 - 31 posts - 9 authors Aspirin, advill, aleve, tylenol all mess my stomach up over time. Any safe pain pills out there prescription or non prescription? And please don't
	Pain Killers Comparison Chart - Painkiller Summary www.vaughns-1-pagers.com/medicine/painkiller-comparison.htm ▼ A summary chart of pain killers, ranked by effectiveness for back pain. Both OTC and prescription upset stomach, not for last trimester I don't know. But it is a
	How taking painkillers can destroy your stomach lining in days Mail www.dailymail.co.uk//How-taking-painkillers-destroy-stoma Daily Mail * Sep 26, 2011 - Claire Calder's (pictured) stomach lining was so damaged from taking non-ulcer dyspepsia — a condition that causes chronic stomach pain Doctors have yet to establish why some people react so badly and others don't.
	In search of painkillers that don't damage the stomach [Archive boards straightdone com > > General Questions The Straight Done *

I need to reason...

Natural Language Processing in Brief

- Morphological Analysis
- · Language modeling
- Part-of-speech tagging
- Syntactic Parsing
- Computational Lexical Semantics
- Statistical Machine Translation
- Discourse and Dialogue
- Text Summarization
- Question Answering
- Information Extraction and Text Mining
- Speech Processing

7/04/2015

Pagina 36

We are talking about words!

What are words?

- Basic building block of language
- Every human language, either spoken or written, is composed of words
- A word is the smallest free form that can be uttered in isolation with semantic and pragmatic content
- Made up of morphemes (smallest component of word that has semantic meaning)
 - tree <
 - tree+s <
 - sub+tree root
 - un+important

We need to perform a morphological analysis

- "Morphology is the study of the way words are built up from smaller meaning-bearing units" (Jurafsky & Martin, 2000)
- The meaning-bearing units are called morphemes
- Two main types of morphemes:
 - Stem or root: the main morpheme of a word
 - Affixes: prefixes (re-write), suffixes (beauti-ful-ly), infixes and circumfixes
- In order to detect these components we need to perform morphological parsing

The concept of parsing

Morphological Parsing

Input	Morphologically Parsed Output
beagles	beagle +N +PL
cities	city +N +PL
buy	buy +N +SG or buy +V
buying	buy +V +PRES-PART
bought	buy +V +PAST-PART or buy +V +PAST

• What do we need to build a morphological parser?

Three levels: lexical, intermediate and surface level

Morphological Parsing with Finite State Transducers

- We would like to keep distinct the surface and the lexical levels
- We need to build mapping rules between concatenation of letters and morpheme+feature sequences

Lexical level	b	е	а	g	I.	е	+N	+PL
Surface level	b	е	а	g	I	е	S	

- A finite-state transducer implements two-level morphology and maps between one set of symbols to another
 - Done using a (two-tape) finite-state automaton
 - Recognizes or generates pairs of strings

NLP: Regular Expressions, Automata and Morphology Roberto Navigli	27/04/2015	45

But: Just concatenating morphemes doesn't always work!

- **box+s** = **boxs**, rather than **boxes**
- **boxes** woudn't be recognized!
- Why? Because of a spelling change at morpheme boundaries
- We need to introduce spelling (or orthographical) rules
 And implement these rules as FSTs

Rule	Description	Example
Consonant doubling	1 consonant doubled before – ing or –ed	beg/begging, embed/embedded
E deletion	e taken out beforeing or -ed	make/making
E insertion	e added after –s, -z, -x, -ch, - sh before s	watch/watches
Y replacement	-y replaced by -ies before -s, -i before -ed	try/tries, try/tried, city/cities
NLP: Regular Expression Roberto Navigli	ons, Automata and Morphology 27/04/2015	49

Example: transducer for the "E insertion" rule

- So one can build a transducer for each spelling and orthographical rule
- For example: foxes -> fox+s
 - $(q0 \rightarrow q0 \rightarrow q1 \rightarrow q2 \rightarrow q3 \rightarrow q4 \rightarrow q0)$

Where do we go from here?

- We are now able to process text at the morphological level
- We can work on word combinations
- For instance, from The Telegraph:
 - Escort claims Berlusconi's 'bunga bunga' parties full of young...
- What comes next?
 - Old women? Boys? Girls?
 - It depends! On what?

	NLP: Language Models Roberto Navigli	27/04/2015	Pagina 52
--	---	------------	-----------

1-grams (unigrams): just a single word

• Absolute count of each word (e.g. on the Web):

	95119665584
< S >	95119665584
	30578667846
	22077031422
<unk></unk>	21594821357
the	19401194714
-	16337125274
of	12765289150
and	12522922536
1	12255665115
to	11557321584
)	9036544694
(8912668768
а	7841087012
in	7490628883

NLP: Language Models	27/04/2015	Pagina 53
Roberto Navigli		

2-grams (bigrams): sequences of two words

• Absolute count of two words (e.g. on the Web):

young	gipsy	267
young	gir	1203
young	gir.s	79
young	giraffe	817
young	giraffes	288
young	giral	77
young	girel	245
young	girels	227
young	girils	266
young	giris	59
young	girks	379
young	girl	1716008
young	girl'	64
young	girl.I	138
young	girla	117

NLP: Language Models Roberto Navigli	27/04/2015	Pagina 54
---	------------	-----------

3-grams (trigrams): sequences of 3 words

of	young	german	80	
of	young	giant	245	
of	young	giants	55	
of	young	gibbons	5	48
of	young	gifted	589	
of	young	ginger	96	
of	young	girl	11631	
of	young	girlfri	ends	153
of	voung	girlhoo	bd	48
of	voung	girls	86186	
of	young	girlsno	on	10
of	young	global	119	
of	young	globula	ar	166

NLP: Language Models
Roberto Navigli

27/04/2015

Pagina 55

Word prediction and N-gram models

- We can create language models, called N-gram models
 - they predict the next word from the previous N-1 words
 - they define probability distributions over strings of text
- Useful in:
 - Speech recognition
 - Handwriting recognition
 - Machine translation
 - Spelling correction
 - Part-of-speech tagging

Simple N-grams

 Our aim is to compute the probability of a word given some history:

P(w|h)

- For instance:
 - P(rapa|qui non l'ha capito nessuno che questa è una) =
 C(qui non l'ha capito nessuno che questa è una rapa)/
 C(qui non l'ha capito nessuno che questa è una)
- How easily can we calculate this probability?

Pagina 57

1) It depends on the corpus

- With a large corpus, such as the Web, we can compute these counts
- But: try yourself!

Google	? "qui non l'ha capito nessuno"	×	Search
0	About 8,900 results (0.09 seconds)	Adv	anced search
🚼 Everything	CLAMOROSO: Stefanino al posto di Davide Flauto - page 4		
💿 Images	- [Translate this page] 3 posts - 3 authors - Last post: 18 Jan 2010		
🚞 Videos	Ma come non hai capito la sostituzione? Lo dice il regolamento! :##embr2##:	A parte	e gli
News	scherziqui non l'ha capito nessuno :huh: lariserva.forumcommunity.net > Archivio > Amici 9 2010 - Cached		

- · Bad luck?
- The Web is not big enough (!) to provide good estimates for most counts

NLP: Language Models Roberto Navigli	27/04/2015	Pagina 58

2) Language is infinite

• You are a good student - About 4,630,000 results (0.19 seconds) • You are a very good student - About 2,040,000 results (0.36 seconds) · You are a very very good student - 7 results (0.26 seconds) Too good • You are a very very very good student for the - 1 result (0.25 seconds) Web! · You are a very very very very good student - 0 results! NLP: Language Models Roberto Navigli 27/04/2015 Pagina 59

So what is a language model?

- P("You are a good student") will be high
- P("You are a very very very very good student") will be very low

NLP: Language Models Roberto Navigli	27/04/2015	Pagina 60
---	------------	-----------

We need to estimate probabilities

• Chain rule of probability:

$$P(w_1...w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1^2)...P(w_n \mid w_1^{n-1})$$
$$= \prod_{k=1}^n P(w_k \mid w_1^{k-1})$$

• Not enough - we need to approximate:

$$P(w_n | w_1^{n-1}) \approx P(w_n | w_{n-1})$$

- Independence assumption: Markov assumption of order N-1
- How to estimate these bigram probabilities (N=2)?

NLP: Language Models Roberto Navigli	27/04/2015	Pagina 61

Calculating the Relative Frequency Estimate

- Bracket sentences with <s> and </s>
- Count the frequency of each bigram
- We estimate the bigram probabilities by normalizing counts from a corpus:

$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)} = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

• General case with N-gram probabilities:

$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

NLP: Language Models Roberto Navigli	27/04/2015	Pagina 62

Bigram Models are Markov chains

	<s></s>	il	 cane	il cane
<s></s>	0	0.3	 0.01	(<s>) gatto</s>
il	0	0	 0.2	Casa
	0		 	(hai) finestra
cane	0	0.1	 0.01	

A random process usually characterized as memoryless: the next state depends only on the current state

NLP: Language Models Roberto Navigli	27/04/2015	Pagina 64

Word classes / Parts Of Speech (POS) / Lexical Tags

- Why do we need word classes?
- They give important information about the word and its neighbours
- He is running the race
- He decided to race for the job

Word classes / Parts Of Speech (POS) / Lexical Tags

- Why do we need word classes?
- They give important information about the word and its neighbours
- Useful for recognizing speech and correcting spelling errors:
 - What is likely to come after an adjective?
 - a verb? a preposition? a noun?

NLP: Part-of-Speech tagging Roberto Navigli 27/04/2015

Pagina 69

Part-of-Speech Tagging

 It consists of assigning a part-of-speech tag to each word in a text automatically

Part-of-Speech Ambiguity

- Unfortunately, the same word can be tagged with different POS tags:
 - How to increase the water pressure from a well?
 - Tears well in her eyes
 - The wound is nearly well
 - The party went well
- Part-of-Speech tagging is a disambiguation task!

An Example: an English sentence

sentence:	The	oboist	Heinz	Holliger	has	taken	a	hard	line	about	the	problems	
original:	Dт	NN	NNP	NNP	VBZ	VBN	Dt	JJ	NN	IN	Dт	NNS	
universal:	Det	Noun	Noun	Noun	VERB	VERB	Det	Adj	Noun	Adp	Det	Noun	

Example English sentence with its language specific and corresponding universal POS tags.

NLP: Part-of-Speech tagging Roberto Navigli	27/04/2015	Pagina 73

Stochastic Part-of-Speech Tagging (since 1970s)

- Stochastic POS tagging uses probabilities to tag
- Idea: use Hidden Markov Models to select the mostlikely tags for a given sequence of words

$$\hat{t}_1^n = \underset{t_1^n \in Tagset^n}{\arg \max} P(t_1^n \mid w_1^n)$$

• But how can we calculate these probabilities?

Holy Bayes!

• Remember?

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

• Let's apply Bayes' Theorem to our formula:

$$\hat{t}_1^n = \underset{t_1^n \in Tagset^n}{\operatorname{arg\,max}} \frac{P(w_1^n \mid t_1^n) P(t_1^n)}{P(w_1^n)} = \underset{t_1^n \in Tagset^n}{\operatorname{arg\,max}} \frac{P(w_1^n \mid t_1^n) P(t_1^n)}{\bigwedge}$$
likelihood prior

• Still hard to compute!

NLP: Part-of-Speech tagging Roberto Navigli	27/04/2015	Pagina 76
--	------------	-----------

HMM taggers make two simplifying assumptions

1) The probability of a word depends only on its own partof-speech tag

$$P(w_1^n \mid t_1^n) = P(w_1 \mid t_1^n) P(w_2 \mid w_1, t_1^n) \dots P(w_n \mid w_1^{n-1}, t_1^n) \approx \prod_{i=1}^n P(w_i \mid t_i)$$

2) The probability of a tag appearing depends only on the previous tag (bigram assumption)

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i \mid t_{i-1})$$

NLP: Part-of-Speech tagging Roberto Navigli	27/04/2015	Pagina 77

The two simplifying assumptions in action

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n} \in Tagset^{n}}{\arg\max} P(t_{1}^{n} \mid w_{1}^{n}) \approx \underset{t_{1}^{n} \in Tagset^{n}}{\arg\max} \prod_{i=1}^{n} P(w_{i} \mid t_{i}) P(t_{i} \mid t_{i-1})$$

 Now we can easily estimate these two probabilities from a part-of-speech tagged corpus

$$P(t_i \mid t_{i-1}) = \frac{c(t_{i-1}, t_i)}{c(t_{i-1})}$$

$$P(w_i \mid t_i) = \frac{c(t_i, w_i)}{c(t_i)}$$

NLP: Part-of-Speech tagging Roberto Navigli	27/04/2015	Pagina 78

Estimating Conditional Probabilities for Tags

$$P(t_i \mid t_{i-1}) = \frac{c(t_{i-1}, t_i)}{c(t_{i-1})}$$

• Examples:

$$P(NN \mid DT) = \frac{c(DT, NN)}{c(DT)} = \frac{58,800}{120,000} = 0.49$$
$$P(JJ \mid DT) = \frac{c(DT, JJ)}{c(DT)} = \frac{52,800}{120,000} = 0.42$$
$$P(IN \mid DT) = \frac{c(DT, IN)}{c(DT)} = \frac{120}{120,000} = 0.001$$

NLP: Part-of-Speech tagging	27/04/2015	Pagina 79
Roberto Navigli		

Estimating Conditional Probabilities for Words

$$P(w_i \mid t_i) = \frac{c(t_i, w_i)}{c(t_i)}$$

• Examples:

$$P(is | VBZ) = \frac{c(VBZ, is)}{c(VBZ)} = \frac{9,600}{20,000} = 0.48$$
$$P(are | VBZ) = \frac{c(VBZ, are)}{c(VBZ)} = \frac{2}{20,000} = 0.0001$$

NLP: Part-of-Speech tagging Roberto Navigli	27/04/2015	Pagina 80

An Example

- You can book your flight
 - P(book|VB)=0.0004
 - P(book|NN)=0.0002
 - P(VB|MD)=0.5
 - P(NN|MD)=0.001
- So what is the most likely tag for book?

Pagina 81

Another Example from Jurafsky & Martin 2008

· How to choose the correct global tagging sequence?

Hidden Markov Models (HMM)

 A HMM allows us to talk both about observed events (word sequence in input) and unobserved (hidden) events (part-of-speech tags) that are causal factors in our probabilistic model

Go to the Machine Learning class!!!

So far about word ordering...

- Morphological analysis: Finite-state transducers
- N-gram models: Computing probabilities for word sequences
- Part-of-speech classes: equivalence classes for words
- We now move to... formal grammars!

Example

- Se una notte d'inverno un viaggiatore
- *Se notte una d'inverno un viaggiatore
- Una notte se d'inverno un viaggiatore
- *Se un notte d'inverno una viaggiatore
- Se una notte un viaggiatore d'inverno
- Se un viaggiatore d'inverno una notte
- *Se un una notte viaggiatore d'inverno
- *Se un una d'notte viaggiatore inverno
- ~Se un inverno d'notte un viaggiatore
- · Se d'inverno un viaggiatore una notte
- · Se d'inverno una notte un viaggiatore

Context-Free Grammars (CFGs)

• A context-free grammar (CFG) or phrase-structure grammar is a formal grammar defined as a 4-tuple:

$$G = (N, T, P, S)$$

- where:
 - N is the set of nonterminal symbols (phrases or clauses)
 - T is the set of terminal symbols (lexicon)
 - P is the set of productions (rules), a relation $\subseteq N \times (N \cup T)^*$
 - S is the start symbol such that $S \in N$, $\exists (S, \beta) \in P$

NLP: Syntax Roberto Navigli	27/04/2015	Pagina 88

37

Example

Treebanks

- CFGs can be used to assign a parse tree to any valid sentence
- We can build a corpus, called treebank, whose sentences are annotated with parse trees
- The most popular project of this kind is the Penn Treebank
 - From the Brown, Switchboard, ATIS and Wall Street Journal corpora of English
 - Wall Street Journal: 1.3 million words
 - Brown Corpus: 1 million words
 - Switchboard: 1 million words
 - All tagged with Part of Speech & syntactic structure
 - Developed 1988-1994

NLP: Syntax Roberto Navigli	27/04/2015	Pagina 92

Viewing Treebanks as Grammars

Pagina 94

- · The sentences in a treebank can be viewed as a grammar of the language
- We can extract the rules from the parsed sentences
- For example:
 - NP \rightarrow DT JJ NN
 - $\text{NP} \rightarrow \text{DT} \text{ JJ} \text{ NNS}$
 - NP \rightarrow DT JJ NN NV Cardinal number
 - NP \rightarrow DT JJ CD NNS
 - NP \rightarrow RB DT JJ NN NN
 - NP \rightarrow RB DT JJ JJ NNS
 - NP \rightarrow DT IJ JJ NNP NNS

Adverb

NLP: Syntax Roberto Navigl

Proper noun, sing.

27/04/2015

Syntactic Parsing

 The task of recognizing a sentence and assigning a syntactic structure to it

parse tree for a sentence

NLP: Syntax Roberto Navigli	27/04/2015	Pagina 95

The Cocke-Kasami-Younger (CKY) Algorithm

- A bottom-up dynamic programming parsing approach
- Takes as input a CFG in Chomsky Normal Form
- Given a sentence of n words, we need an (n+1)x(n+1) matrix
- Cell (i,j) contains the set of non-terminals that produce all the constituents spanning positions from i to j of the input sentence
- The cell that represents the entire sentence is (0,n)
- Main idea: if a non-terminal A is in (i,j), there is a production A → B C, so there must be an intermediate position k with B in (i,k) and C in (k,j)

Example of CKY Table [from Jurafsky & Martin book]

Book	the	flight	through	Houston
S,VP,Verb Nominal, Noun		S,VP,X2		S, VP
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		NP
	[1.2]	[1,3]	[1.4]	[1.5]
		Nominal, Noun		Nominal
		[2,3]	[2,4]	[2,5]
			Prep	PP
			[3,4]	[3,5]
				NP, Proper- Noun
				[4,5]

NLP: Syntax Roberto Navigli	27/04/2015	Pagina 97

Example of CKY Table [from Jurafsky & Martin book]

NLP: Syntax Roberto Navigli	27/04/2015	Pagina 98

Example of CKY Table [from Jurafsky & Martin book]

Probabilistic (or Stochastic) CFGs

- First proposed by Taylor Booth (1969)
- In a probabilistic CFG G = (N, T, P, S), each production

$$A \rightarrow w [p]$$

is assigned a probability $p = P(w|A) = P(A \rightarrow w)$

• For each left-hand-side non-terminal A, it must hold:

$$\sum_{w} P(A \to w) = 1$$

NLP: Syntax 27/04/2015 Pagina 102 Roberto Navigli

An Example of PCFG (from Jurafsky & Martin)

$S \rightarrow NP VP$	[.80
$S \rightarrow Aux NP VP$	j.15
$S \rightarrow VP$.05
$NP \rightarrow Pronoun$	j.35
$NP \rightarrow Proper-Noun$.30 [.30
$NP \rightarrow Det Nominal$.20
$NP \rightarrow Nominal$	j.15
$Nominal \rightarrow Noun$.75
$Nominal \rightarrow Nominal Noun$	[.20
$Nominal \rightarrow Nominal PP$	[.05
$VP \rightarrow Verb$	[.35
$VP \rightarrow Verb NP$	[.20
$VP \rightarrow Verb NP PP$	[.10
$VP \rightarrow Verb PP$	[.15
$VP \rightarrow Verb NP NP$	[.05
$VP \rightarrow VP PP$	[.15
$PP \rightarrow Preposition NP$	[1.0

$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
Noun \rightarrow book [.10] flight [.30]
<i>meal</i> [.15] <i>money</i> [.05]
<i>flights</i> [.40] <i>dinner</i> [.10]
$Verb \rightarrow book [.30] \mid include [.30]$
<i>prefer</i> ; [.40]
Pronoun $\rightarrow I[.40] \mid she [.05]$
<i>me</i> [.15] <i>you</i> [.40]
<i>Proper-Noun</i> \rightarrow <i>Houston</i> [.60]
TWA [.40]
$Aux \rightarrow does [.60] \mid can [40]$
Preposition \rightarrow from [.30] to [.30]
on [.20] near [.15]
through [.05]

NLP: Syntax	27/04/2015	Pagina 103
Roberto Navigli		

Meaning, meaning, meaning!

• We are now moving from syntax to semantics

Meaning, meaning, meaning!

• We are now moving from syntax to semantics

Word Senses

The meaning of a word depends on the context in which
 it occurs

Word Senses

- The meaning of a word depends on the context in which it occurs
- We call each meaning of a word a word sense

Word Senses in Context

• I am catching the earliest **plane** to Brussels.

 Let's represent three-dimensional structures on a two-dimensional plane

NLP: Semantics Roberto Navigli	27/04/2015	Pagina 114

WordNet [Miller et al. 1990]

- The most popular computational lexicon of English
 Based on psycholinguistic theories
- Concepts expressed as sets of synonyms (synsets)
 { car_n¹, auto_n¹, automobile_n¹, machine_n⁴, motorcar_n¹ }
- · A word sense is a word occurring in a synset
 - machine_n⁴ is the fourth sense of noun machine

NLP: Semantics	
Roberto Navigli	

WordNet: the "car" example

WordNet provides textual definitions

- Called glosses
- · A textual definition is provided for each synset
- Gloss of car_n¹:
 - "a 4-wheeled motor vehicle; usually propelled by an internal combustion engine; 'he needs a car to get to work' "
- Gloss of car_n²:

- "a wheeled vehicle adapted to the rails of railroad;
 'three cars had jumped the rails' "
- Also available in quasi-logical form

WordNet encodes relations!

- Semantic relations between synsets
 - **Hypernymy** (car_{n¹} is-a motor vehicle_{n¹})
 - **Meronymy** $(car_n^1 has a car door_n^1)$
 - Entailment, similarity, attribute, etc.
- Lexical relations between word senses
 - Synonymy (i.e., words that belong to the same synset)
 - **Antonymy** (good_a¹ antonym of bad_a^1)
 - **Pertainymy** (dental_a¹ pertains to tooth_n¹)
 - Nominalization (service²_n nominalizes serve⁴_v)

NLP: Semantics Roberto Navigli	27/04/2015	Pagina 119

WordNet as a Graph

But WordNet is more than Simply a Graph!

- It is a semantic network!
- A semantic network is a network which represents semantic relations among concepts
- It is often used as a form of knowledge representation

Word Sense Disambiguation (WSD)

- WSD is the task of computationally determining which sense of a word is activated by its use in a particular context [Ide and Véronis, 1998; Navigli, 2009]
- It is basically a classification task
 - The objective is to learn how to classify words into word senses
 - This task is strongly tied to Machine Learning

I drank a cup of chocolate at the **bar**

Supervision and Knowledge

Supervised WSD: Support Vector Machines

- SVM learns a linear hyperplane from the training set that separates positive from negative examples
- The hyperplane maximizes the distance to the closest positive and negative examples (**support vectors**)
- Achieves state-of-the-art performance in WSD [Keok and Ng, 2002] x2.

Knowledge-based Word Sense Disambiguation

Knowledge-based Word Sense Disambiguation

BabelNet [Navigli and Ponzetto, AIJ 2012]

• A wide-coverage multilingual semantic network including both encyclopedic (from Wikipedia) and lexicographic (from WordNet) entries

BabelNet as a Multilingual Inventory for:

Concepts

Calcio in Italian can denote different concepts:

Named Entities

The word *Mario* can be used to represent different things such as the video game charachter or a soccer player (Gomez) or even a music album

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli)

BabelNet 3.0 is online: http://babelnet.org

	N				
	BabelNet				
Type a text or a term	A very large multilingual encyclopedic dictionary and sema	ntic network	Ŧ	SEARCH	
					•
BabelNet, Babelfy Roberto Navigli	, Video games with a purpose & the Wikipedia Bitax	onomy		131	

New 3.0 version out!

- Seamless integration of:
 - WordNet 3.0
 - Wikipedia
 - Wikidata
 - Wiktionary
 - OmegaWiki
 - Open Multilingual WordNet [Bond and Foster, 2013]
- · Translations for all open-class parts of speech
- 2B RDF triples available via SPARQL endpoint

Step 1: Semantic Signatures

Step 2: Find all possible meanings of words

1. Exact Matching (good for WSD, bad for EL)

Step 2: Find all possible meanings of words

2. Partial Matching (good for EL)

Step 2: Find all possible meanings of words

• "Thomas and Mario are strikers playing in Munich"

Step 3: Connect all the candidate meanings

• Thomas and Mario are strikers playing in Munich

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli 42

Step 4: Extract a dense subgraph

• Thomas and Mario are strikers playing in Munich

Step 4: Extract a dense subgraph

• Thomas and Mario are strikers playing in Munich

• Thomas and Mario are strikers playing in Munich

http://babelfy.org

fy	Text to ba	belfy			
Babe	Elfy Enable part	ial matches: 🗌	ENGLISH *	BABELFYI	
ABOUT PUBLICATIONS DOWNLOADS		Babelfy is an output of the MultiJEDI ERC Starting Grant No. 259234. Co application by Roberto Navigli. Babelfy and its API are licensed under a Commons Attribution-Non Commercial-Share Alike 3.0 License. For any i use, please contact us. () () () () ()	incept and Creative commercial	erc	
	BabelNet, Babe Roberto Navigli	omy	150		

The Charlie Hebdo gun attack (English)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli

The Charlie Hebdo gun attack (English)

The Charlie Hebdo gun attack (English)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli

The Charlie Hebdo gun attack (Italian)

The Charlie Hebdo gun attack (Italian)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli 155

The Charlie Hebdo gun attack (Italian)

fy				B	Assalto al giornale Armati di kalasholi yo gapite e ij porti- terrore. 12 vitime	Charlie (cv. nella rre delle (e 11 fedi)	jebda: 12 morti. Due g sede del astlimanale ai stabile. Sinque ferti gra , gli sul 5 gravi ma non j	gị tro kille atirico. D tự, ma no giù in per	rr reduci dalla Siria ue killer garebbero tornati n giù in gericole di vita. Er icole di vita. L'attacce mer	da ee ancei an e e e	ce dalla guerra in Siria. U a Hollande: "È terroriano" legno da tra vennini sontro	ccisi 8 gi PABIG la sede	omalisti, 2 agenti I - Ginque minuti s del giomale, a		
	Babelfy		Enable partial matches: 🗔					ITALIAN * BABELFYI							
	ex	panded v	iew	compact	/iew										
	da	a poc	0	dalla	guerra	in	Siria		Uccisi	8	giornalisti	, 2	ager	nti ,	ι.
r old					(H)		* *		200 th				agenti a represent acts on beh persons or	ative who alf of other	ľ
<)				guerra the waging of armed conflict against an enemy; "thousands of people were killed in		Siria an Asian republic in the Middle East at th east end of the Mediterranean; site of	e of	Uccisi unlawful premeditated killing of a human being by a human being		giomalisti a writer for newspapers and magazines		organization	•	
				Bab	alNet Babelfy Vi	deo as	amos with a pur	nosol	R the Wikinedia P	itave	nomy				
				Babe Robe	erto Navigli	aeo ga	imes with a pur	pose a	the Wikipedia B	itaxo	bnomy				

The Charlie Hebdo gun attack (French)

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli

The Charlie Hebdo gun attack (French)

The Wikipedia structure: an example

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli

159

Our goal

To **automatically** create a **Wi**kipedia **Bi**taxonomy for Wikipedia pages and categories in a simultaneous fashion.

The Wikipedia Bitaxonomy: an example

The WiBi Page taxonomy

Assumption

 The first sentence of a page is a good definition (also called gloss)

The WiBi Page taxonomy

- 1. [Syntactic step] Extract the hypernym lemma from a page definition using a syntactic parser;
- 2. [Semantic step] Apply a set of linking heuristics to disambiguate the extracted lemma.

Roberto Navigl

The story so far

The Bitaxonomy algorithm

The Bitaxonomy algorithm

The information available in the two taxonomies is mutually beneficial

- At each step exploit one taxonomy to update the other and vice versa
- Repeat until convergence

168

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli

The Bitaxonomy algorithm

The Bitaxonomy algorithm

The Bitaxonomy algorithm

The Bitaxonomy algorithm

Example from http://wibitaxonomy.org: WordNet

Example from http://wibitaxonomy.org: Wikipedia

BabelNet, Babelfy, Video games with a purpose & the Wikipedia Bitaxonomy Roberto Navigli

THAT'S ALL FOLKS!!!

(Isn't it enough???)

Thanks or...

Roberto Navigli

Linguistic Computing Laboratory http://lcl.uniroma1.it

