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Prologue

Given a combinatorial optimization problem, the goal of a
search algorithm is to find a (near-)optimal solution.
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Prologue

Given a combinatorial optimization problem, the goal of a
search algorithm is to find a (near-)optimal solution.

but

How to decrease the probability of getting lost in the
universe of feasible solutions?
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Prologue

“Shoot! You not only got
the wrong planet, you got the
wrong solar system. . . . I
mean, a wrong planet I can
understand – but a whole so-
lar system?”
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Goals

Introduction to metaheuristics
Where we will get the intuition on how
metaheuristics work

Outline of ongoing research issues
Where we will get pointers to more technical/formal
issues
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Outline

Combinatorial Optimization Problems

Approximate algorithms

Metaheuristics
Local search-besed methods
Population-based metaheuristics

Research issues
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COP

A Combinatorial Optimization Problem P = (S, f) can be
defined by:

variables X = {x1, . . . , xn};

variable domains D1, . . . , Dn;

constraints among variables;

Objective function f : D1 × . . .×Dn → IR+;

The set of all possible feasible assignments S = {s =

{(x1, v1), . . . , (xn, vn)} | vi ∈ Di, s satisfies all the constraints}
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COP

Objective: find a solution s∗ ∈ S with minimum objective
function value, i.e., f(s∗) ≤ f(s) ∀s ∈ S.
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Objective: find a solution s∗ ∈ S with minimum objective
function value, i.e., f(s∗) ≤ f(s) ∀s ∈ S.

Many COPs are NP-hard⇒ no polynomial time algorithm
exists (assuming P 6= NP)
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COP

Objective: find a solution s∗ ∈ S with minimum objective
function value, i.e., f(s∗) ≤ f(s) ∀s ∈ S.

Many COPs are NP-hard⇒ no polynomial time algorithm
exists (assuming P 6= NP)

Examples: Traveling salesman problem (TSP), quadratic
assignment problem (QAP), maximum satisfiability problem
(MAXSAT), timetabling and scheduling problems.
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TSP

Traveling Salesman Problem

Given an undirected graph, with n nodes and each arc
associated with a positive value, find the Hamiltonian tour
with the minimum total cost.
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TSP
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Solving algorithms

Complete algorithms

Approximate (or incomplete) algorithms
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Complete algorithms

Branch & bound, branch & cut, constraint programming
approaches, . . .

Find an optimal solution in finite time (or return failure if
the problem is infeasible)

Disadvantage: for many applications are not efficient
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Approximate algorithms

Heuristic alg., randomized alg., local search,
metaheuristics, limited discrepancy search, . . .

No proof of optimality (if no solution exist, they do not
terminate)

Usually effective and efficient: they find (near-)optimal
solutions efficiently
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Metaheuristics

Approximate algorithms

Applied to Combinatorial Optimization Problems and
Constraint Satisfaction Problems

Applied when:
Large size problems
The goal is to find a (near-)optimal solution quickly
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Metaheuristics

OBJECTIVE: Effectively and efficiently explore the search
space
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Metaheuristics

OBJECTIVE: Effectively and efficiently explore the search
space

Ingredients:

General strategies to balance intensification and
diversification

Use of a priori knowledge (heuristic)

Exploit search history – adaptation

Randomness and probabilistic choices
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Etymology

Metaheuristic comes from the composition of two Greek
words:

Heuristic comes from heuriskein (ǫυρισκǫιν): “to find”

“meta” (µǫτα): “beyond, in an upper level”
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Metaheuristics

Encompass and combine:

Constructive methods (e.g., random, heuristic,
adaptive, etc.)

Local search-based methods (e.g., Tabu Search,
Simulated Annealing, Iterated Local Search, etc.)

Population-based methods (e.g., Evolutionary
Algorithms, Ant Colony Optimization, Scatter Search,
etc.)

How to solve it?An invitation to metaheuristics – p. 16



Heuristic construction

Use problem-specific knowledge (the heuristic) to construct
a solution
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Heuristic construction

Use problem-specific knowledge (the heuristic) to construct
a solution

Example: greedy algorithms on TSP – add the nearest city
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Heuristic construction

Use problem-specific knowledge (the heuristic) to construct
a solution

Example: greedy algorithms on TSP – add the nearest city

Limit : myopic criterion (often solutions have poor quality)
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Local search

The basic idea: start from a feasible solution and improve it
by applying small (“local”) modifications.
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Preliminary definitions

A neighborhood structure is a function N : S → 2S that
assigns to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is
called the neighborhood of s.
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Preliminary definitions

A neighborhood structure is a function N : S → 2S that
assigns to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is
called the neighborhood of s.

A locally minimal solution (or local minimum) with
respect to a neighborhood structure N is a solution ŝ such
that ∀ s ∈ N (ŝ) : f(ŝ) ≤ f(s). We call ŝ a strict locally
minimal solution if f(ŝ) < f(s) ∀ s ∈ N (ŝ).
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Neighborhood: Examples

For problems defined on binary variables, the neighborhood
can be defined on the basis of the Hamming distance (Hd)
between two assignments. E.g.,

N (si) = {sj ∈ {0, 1}
n|Hd(si, sj) = 1}

For example: N (000) = {001, 010, 100}
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Neighborhood: Examples

In TSP, the neighborhood can be defined by means of arc
exchanges on Hamiltonian tours
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Iterative Improvement

Very basic local search

A move is only performed if the solution it produces is
better than the current solution (also called hill-climbing)

The algorithm stops as soon as it finds a local minimum
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A pictorial view
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High-level algorithm

s← GenerateInitialSolution()
repeat

s← BestOf(s,N (s))
until no improvement is possible
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The fitness landscape

Defined by a triple:
L = (S, N , F)

S is the set of solutions (or states);

N is the neighborhood function N : S → 2S that defines
the neighborhood structure, by assigning to every s ∈ S

a set of states N (s) ⊆ S.

F is the objective function, in this specific case called
fitness function, F : S → IR+.
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The fitness landscape

Metaheuristics can be seen as search processes in a
graph

The search starts from an initial node and explores the
graph moving from a node to one of its neighbors, until
it reaches a termination condition
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The fitness landscape
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Escaping strategies...

Problem: Iterative Improvement stops at local minima,
which can be very “poor”.

⇒ Strategies are required to prevent the search from
getting trapped in local minima and to escape from them
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Three basic ideas

1) Accept up-hill moves

i.e., the search moves toward a solution with a worse
objective function value
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Three basic ideas

1) Accept up-hill moves

i.e., the search moves toward a solution with a worse
objective function value

Intuition: climb the hills and go downward in another
direction
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Three basic ideas

2) Change neighborhood structure during the search
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Three basic ideas

2) Change neighborhood structure during the search

Intuition: different neighborhoods generate different search
space topologies
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Three basic ideas

3) Change the objective function so as to “fill-in”
local minima
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Three basic ideas

3) Change the objective function so as to “fill-in”
local minima

Intuition: modify the search space with the aim of making
more “desirable” not yet explored areas
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Trajectory methods

The search process is characterized by a trajectory in
the search space

The search process can be seen as the evolution in
(discrete) time of a discrete dynamical system

Examples: Tabu Search, Simulated Annealing, Iterated
Local Search, ...
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Simulated Annealing

Simulated Annealing exploits the first idea: accept also up-hill
moves

Origins in statistical mechanics (Metropolis algorithm)

It allows moves resulting in solutions of worse quality
than the current solution

The probability of doing such a move is decreased
during the search
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Simulated Annealing

Simulated Annealing exploits the first idea: accept also up-hill
moves

Origins in statistical mechanics (Metropolis algorithm)

It allows moves resulting in solutions of worse quality
than the current solution

The probability of doing such a move is decreased
during the search

Usually, p(accept up-hill moves′) = exp(− f(s′)−f(s)
T

)
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SA: High-level algorithm

s← GenerateInitialSolution()
T ← T0

while termination conditions not met do
s′ ← PickAtRandom(N (s))

if f(s′) < f(s) then
s← s′{s′ replaces s}

else
Accept s′ as new solution with probability p(T, s′, s)

end if
Update(T )

end while
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Cooling schedules

The temperature T can be varied in different ways:

Logarithmic: Tk+1 = Γ
log(k+k0)

.
The algorithm is guaranteed to converge to the optimal
solution with probability 1. Too slow for applications

Geometric: Tk+1 = αTk, where α ∈ ]0, 1[

Non-monotonic: the temperature is decreased
(intensifications is favored), then increased again (to
increase diversification)
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Tabu Search

Tabu Search exploits the second idea: change neighborhood
structure.

Explicitly exploits the search history to dynamically
change the neighborhood to explore

Tabu list : keeps track of recent visited solutions or moves
and forbids them⇒ escape from local minima and no
cycling

Many important concepts developed “around” the basic
TS version (e.g., general exploration strategies)
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High-level algorithm

s← GenerateInitialSolution()
TabuList← ∅
while termination conditions not met do

s← ChooseBestOf(s ∪ N (s) \ TabuList)
Update(TabuList)

end while
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Tabu Search

Storing a list of solutions is often inefficient, therefore
moves are stored instead.
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Tabu Search

Storing a list of solutions is often inefficient, therefore
moves are stored instead.

BUT: storing moves we could cut good not yet visited
solutions
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Tabu Search

Storing a list of solutions is often inefficient, therefore
moves are stored instead.

BUT: storing moves we could cut good not yet visited
solutions

⇓

we use ASPIRATION CRITERIA (e.g., accept a forbidden
move toward a solution better than the current one)
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High-level algorithm

s← GenerateInitialSolution()
InitializeTabuLists(TL1, . . . , TLr)
k ← 0
while termination conditions not met do

AllowedSet(s, k)← {z ∈ N (s) | no tabu condition is
violated or at least one aspiration condition is satisfied}
s← ChooseBestOf(s ∪ AllowedSet(s, k))
UpdateTabuListsAndAspirationConditions()
k ← k + 1

end while
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Guided Local Search

GLS exploits the third idea: dynamically change the
objective function.

Basic principle: help the search to move out gradually
from local optima by changing the search landscape

The objective function is dynamically changed with the
aim of making the current local optimum “less desirable”
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Guided Local Search

GLS penalizes solutions which contains some defined
features (e.g., arcs in a tour, unsatisfied clauses, etc.)

If feature i is present in solution s, then Ii(s) = 1, otherwise
Ii(s) = 0
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Guided Local Search

Each feature i is associated a penalty pi which weights the
importance of the features.

The objective function f is modified so as to take into
account the penalties.
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Guided Local Search

Each feature i is associated a penalty pi which weights the
importance of the features.

The objective function f is modified so as to take into
account the penalties.

f
′

(s) = f(s) + λ
∑m

i=1 pi · Ii(s)
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Guided Local Search

Each feature i is associated a penalty pi which weights the
importance of the features.

The objective function f is modified so as to take into
account the penalties.

f
′

(s) = f(s) + λ
∑m

i=1 pi · Ii(s)

λ scales the contribution of the penalties wrt to the original
objective function
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High-Level Algorithm

s← GenerateInitialSolution()
while termination conditions not met do

s← LocalSearch(s, f
′

)
for all selected features i do

pi ← pi + 1
end for
Update(f ′,p){where p is the penalty vector}

end while
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Lessons learnt

The effectiveness of a metaheuristic strongly depends
on the dynamical interplay of intensification and
diversification

General search strategies have to be applied to
effectively explore the search space

The use of search history characterizes the nowadays
most effective algorithms

Optimal parameter tuning is crucial and sometimes very
difficult to achieve
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Trajectory methods

Other important trajectory methods:

Variable neighborhood search (along with variants)

Iterated local search
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Population-based methods

Population-based metaheuristics perform search
processes which describes the evolution of a set of
points in the search space.
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Population-based methods

Population-based metaheuristics perform search
processes which describes the evolution of a set of
points in the search space.

Some are inspired by natural processes, such as
natural evolution and social insects foraging behavior.
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Population-based methods

Population-based metaheuristics perform search
processes which describes the evolution of a set of
points in the search space.

Some are inspired by natural processes, such as
natural evolution and social insects foraging behavior.

Basic principle: learning correlations between “good”
solution components
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Population-based methods

Evolutionary Algorithms
Evolutionary Programming
Evolution Strategies
Genetic Algorithms

Ant Colony Optimization

Scatter Search

Population-Based Incremental Learning

Estimation of Distribution Algorithms
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The basic principle

Model-based search : Candidate solutions are generated
using a parametrized probabilistic model, updated using the
previously seen solutions in such a way that the search will
concentrate in the regions containing high quality solutions.
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The basic principle

MODEL SAMPLE

MEMORY

AUXILIARY
LEARNING
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Evolutionary Algorithms

Inspired by Nature’s capability to evolve living beings
well adapted to their environment

Computational models of evolutionary processes
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The Evolutionary Cycle

Population

Parents

Offspring

Recombination

Selection

Replacement

Mutation
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High-level algorithm

P ← GenerateInitialPopulation()
Evaluate(P )
while termination conditions not met do

P ′ ← Recombine(P )
P ′′ ← Mutate(P ′)
Evaluate(P ′′)
P ← Select(P ′′ ∪ P )

end while

How to solve it?An invitation to metaheuristics – p. 52



Ant Colony Optimization

Population-based metaheuristic inspired by the foraging
behavior of ants. Ants can find the shortest path between the
nest and a food source.

While walking ants deposit a substance called
pheromone on the ground.

When they decide about a direction to go, they choose
with higher probability paths that are marked by stronger
pheromone concentrations.

This basic behavior is the basis for a cooperative
interaction which leads to the emergence of shortest
paths.
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Ant foraging behavior

(1) (3)

(2) (4)
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Ant Colony Optimization

ACO algorithms are based on a parametrized probabilistic
model – the pheromone model – that is used to model the
chemical pheromone trails.

Artificial ants incrementally construct solutions by adding
opportunely defined solution components to a partial
solution under consideration

Artificial ants perform randomized walks on the construction
graph: a completely connected graph G = (C,L).
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ACO construction graph

G = (C,L)

vertices are the solution components C

L are the connections

states are paths in G.

Solutions are states, i.e., encoded as paths on G

Constraints are also provided in order to construct feasible
solutions
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Example

One possible TSP model for ACO:

- nodes of G (the components) are the cities to be visited;

- states are partial or complete paths in the graph;

- a solution is an Hamiltonian tour in the graph;

- constraints are used to avoid cycles (an ant can not visit
a city more than once).
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Sources of information

Connections, components (or both) can have
associated pheromone trail and heuristic value.

Pheromone trail takes the place of natural pheromone
and encodes a long-term memory about the whole ants’
search process

Heuristic represents a priori information about the
problem or dynamic heuristic information (in the same
way as static and dynamic heuristics are used in
constructive algorithms).
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Ant system

First ACO example

Ants construct a solution by building a path along the
construction graph

The transition rule is used to choose the next node to
add

Both heuristic and pheromone are used

The pheromone values are updated on the basis of the
quality of solutions built by the ants
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Ant system

The probability of moving from city i to city j for ant k is:

pk
ij =







[τij ]
α[ηij ]

β

P

k∈feasiblek
[τik]α[ηik]β

if j ∈ feasiblek

0 otherwise

α e β weight the relative influence of pheromone and heuristic
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Ant System

Pheromone update rule:

τij ← (1− ρ) · τij +

m
∑

k=1

∆τk
ij

∆τk
ij =

{

1
Lk

if ant k used arc (i, j)

0 otherwise

ρ is the evaporation coefficient; Lk is the length of the tour
built by ant k.
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High-level algorithm

while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() {optional}

end ScheduleActivities
end while
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Research lines

Algorithm behavior
Theoretical approach (markov, dynamical systems,
landscape properties)
Empirical approach(scientific method, statistics)

Problem structure vs. algorithm behavior

Integration with complete algorithms

Software engineering approach (tools, multi-agent
systems)

Parallelization
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Dynamical systems

Execution of an algorithm↔ dynamics of a (stochastic)
dynamical system

Attractors↔ stagnation
Local minimum: fixed point
“Trap”: cyclic attractor
????: chaotic attractor
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Dynamical systems

More complex dynamics

Basins of attraction→ are optima reachable? Which is
the probability to reach them from a random initial state
(heuristic solution)?
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Dynamical systems

Advantages:

Convergence proofs

Estimation of completeness probability

Dynamic parameter tuning (no more rule of thumbs...)
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Problem structure vs. algorithm behavior

The impact of structure – whatever it is – on search
algorithms is relevant, especially for the so-called ‘real-world
problems’.

Identify most difficult instances (for a given algorithm)

Understand why an instance is difficult

Exploit this information to choose the best solver, or a
combination of solvers

Evaluate the quality of benchmarks
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Structure

Diverse meanings

Structure vs. random

Usually real world problems are said to be structured

Attempts to define quantitative measures (entropy,
compression ratio, etc.)
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Structure

Diverse meanings

Structure vs. random

Usually real world problems are said to be structured

Attempts to define quantitative measures (entropy,
compression ratio, etc.)

◮
Graph representation of relations among
problem entities
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Graph prop. vs search

Node degree distribution & ‘multi-flip’ local search

Small-world & instance hardness
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Metaheuristics and systematic methods

1. Metaheuristics are applied before systematic methods,
providing a valuable input, or vice versa.

2. Metaheuristics use CP and/or tree search to efficiently
explore the neighborhood.

3. A “tree search”-based algorithm applies a metaheuristic
in order to improve a solution (i.e., a leaf of the tree) or a
partial solution (i.e., an inner node). Metaheuristic
concepts can also be used to obtain incomplete but
efficient tree exploration strategies.
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