
How to solve it?

An invitation to metaheuristics
Andrea Roli

andrea.roli@unibo.it

DEIS

Alma Mater Studiorum Università di Bologna

How to solve it?An invitation to metaheuristics – p. 1

Prologue

Given a combinatorial optimization problem, the goal of a
search algorithm is to find a (near-)optimal solution.

How to solve it?An invitation to metaheuristics – p. 2

Prologue

Given a combinatorial optimization problem, the goal of a
search algorithm is to find a (near-)optimal solution.

but

How to solve it?An invitation to metaheuristics – p. 2

Prologue

Given a combinatorial optimization problem, the goal of a
search algorithm is to find a (near-)optimal solution.

but

How to decrease the probability of getting lost in the
universe of feasible solutions?

How to solve it?An invitation to metaheuristics – p. 2

Prologue

“Shoot! You not only got
the wrong planet, you got the
wrong solar system. . . . I
mean, a wrong planet I can
understand – but a whole so-
lar system?”

How to solve it?An invitation to metaheuristics – p. 3

Goals

Introduction to metaheuristics
Where we will get the intuition on how
metaheuristics work

Outline of ongoing research issues
Where we will get pointers to more technical/formal
issues

How to solve it?An invitation to metaheuristics – p. 4

Outline

Combinatorial Optimization Problems

Approximate algorithms

Metaheuristics
Local search-besed methods
Population-based metaheuristics

Research issues

How to solve it?An invitation to metaheuristics – p. 5

COP

A Combinatorial Optimization Problem P = (S, f) can be
defined by:

variables X = {x1, . . . , xn};

variable domains D1, . . . , Dn;

constraints among variables;

Objective function f : D1 × . . .×Dn → IR+;

The set of all possible feasible assignments S = {s =

{(x1, v1), . . . , (xn, vn)} | vi ∈ Di, s satisfies all the constraints}

How to solve it?An invitation to metaheuristics – p. 6

COP

Objective: find a solution s∗ ∈ S with minimum objective
function value, i.e., f(s∗) ≤ f(s) ∀s ∈ S.

How to solve it?An invitation to metaheuristics – p. 7

COP

Objective: find a solution s∗ ∈ S with minimum objective
function value, i.e., f(s∗) ≤ f(s) ∀s ∈ S.

Many COPs are NP-hard⇒ no polynomial time algorithm
exists (assuming P 6= NP)

How to solve it?An invitation to metaheuristics – p. 7

COP

Objective: find a solution s∗ ∈ S with minimum objective
function value, i.e., f(s∗) ≤ f(s) ∀s ∈ S.

Many COPs are NP-hard⇒ no polynomial time algorithm
exists (assuming P 6= NP)

Examples: Traveling salesman problem (TSP), quadratic
assignment problem (QAP), maximum satisfiability problem
(MAXSAT), timetabling and scheduling problems.

How to solve it?An invitation to metaheuristics – p. 7

TSP

Traveling Salesman Problem

Given an undirected graph, with n nodes and each arc
associated with a positive value, find the Hamiltonian tour
with the minimum total cost.

How to solve it?An invitation to metaheuristics – p. 8

TSP

How to solve it?An invitation to metaheuristics – p. 9

Solving algorithms

Complete algorithms

Approximate (or incomplete) algorithms

How to solve it?An invitation to metaheuristics – p. 10

Complete algorithms

Branch & bound, branch & cut, constraint programming
approaches, . . .

Find an optimal solution in finite time (or return failure if
the problem is infeasible)

Disadvantage: for many applications are not efficient

How to solve it?An invitation to metaheuristics – p. 11

Approximate algorithms

Heuristic alg., randomized alg., local search,
metaheuristics, limited discrepancy search, . . .

No proof of optimality (if no solution exist, they do not
terminate)

Usually effective and efficient: they find (near-)optimal
solutions efficiently

How to solve it?An invitation to metaheuristics – p. 12

Metaheuristics

Approximate algorithms

Applied to Combinatorial Optimization Problems and
Constraint Satisfaction Problems

Applied when:
Large size problems
The goal is to find a (near-)optimal solution quickly

How to solve it?An invitation to metaheuristics – p. 13

Metaheuristics

OBJECTIVE: Effectively and efficiently explore the search
space

How to solve it?An invitation to metaheuristics – p. 14

Metaheuristics

OBJECTIVE: Effectively and efficiently explore the search
space

Ingredients:

General strategies to balance intensification and
diversification

Use of a priori knowledge (heuristic)

Exploit search history – adaptation

Randomness and probabilistic choices

How to solve it?An invitation to metaheuristics – p. 14

Etymology

Metaheuristic comes from the composition of two Greek
words:

Heuristic comes from heuriskein (ǫυρισκǫιν): “to find”

“meta” (µǫτα): “beyond, in an upper level”

How to solve it?An invitation to metaheuristics – p. 15

Metaheuristics

Encompass and combine:

Constructive methods (e.g., random, heuristic,
adaptive, etc.)

Local search-based methods (e.g., Tabu Search,
Simulated Annealing, Iterated Local Search, etc.)

Population-based methods (e.g., Evolutionary
Algorithms, Ant Colony Optimization, Scatter Search,
etc.)

How to solve it?An invitation to metaheuristics – p. 16

Heuristic construction

Use problem-specific knowledge (the heuristic) to construct
a solution

How to solve it?An invitation to metaheuristics – p. 17

Heuristic construction

Use problem-specific knowledge (the heuristic) to construct
a solution

Example: greedy algorithms on TSP – add the nearest city

How to solve it?An invitation to metaheuristics – p. 17

Heuristic construction

Use problem-specific knowledge (the heuristic) to construct
a solution

Example: greedy algorithms on TSP – add the nearest city

Limit : myopic criterion (often solutions have poor quality)

How to solve it?An invitation to metaheuristics – p. 17

Local search

The basic idea: start from a feasible solution and improve it
by applying small (“local”) modifications.

How to solve it?An invitation to metaheuristics – p. 18

Preliminary definitions

A neighborhood structure is a function N : S → 2S that
assigns to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is
called the neighborhood of s.

How to solve it?An invitation to metaheuristics – p. 19

Preliminary definitions

A neighborhood structure is a function N : S → 2S that
assigns to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is
called the neighborhood of s.

A locally minimal solution (or local minimum) with
respect to a neighborhood structure N is a solution ŝ such
that ∀ s ∈ N (ŝ) : f(ŝ) ≤ f(s). We call ŝ a strict locally
minimal solution if f(ŝ) < f(s) ∀ s ∈ N (ŝ).

How to solve it?An invitation to metaheuristics – p. 19

Neighborhood: Examples

For problems defined on binary variables, the neighborhood
can be defined on the basis of the Hamming distance (Hd)
between two assignments. E.g.,

N (si) = {sj ∈ {0, 1}
n|Hd(si, sj) = 1}

For example: N (000) = {001, 010, 100}

How to solve it?An invitation to metaheuristics – p. 20

Neighborhood: Examples

In TSP, the neighborhood can be defined by means of arc
exchanges on Hamiltonian tours

c d

a b

c d

a b

b
a

f

e

d

c

b
a

f d

e

How to solve it?An invitation to metaheuristics – p. 21

Iterative Improvement

Very basic local search

A move is only performed if the solution it produces is
better than the current solution (also called hill-climbing)

The algorithm stops as soon as it finds a local minimum

How to solve it?An invitation to metaheuristics – p. 22

A pictorial view

How to solve it?An invitation to metaheuristics – p. 23

High-level algorithm

s← GenerateInitialSolution()
repeat

s← BestOf(s,N (s))
until no improvement is possible

How to solve it?An invitation to metaheuristics – p. 24

The fitness landscape

Defined by a triple:
L = (S, N , F)

S is the set of solutions (or states);

N is the neighborhood function N : S → 2S that defines
the neighborhood structure, by assigning to every s ∈ S

a set of states N (s) ⊆ S.

F is the objective function, in this specific case called
fitness function, F : S → IR+.

How to solve it?An invitation to metaheuristics – p. 25

The fitness landscape

Metaheuristics can be seen as search processes in a
graph

The search starts from an initial node and explores the
graph moving from a node to one of its neighbors, until
it reaches a termination condition

How to solve it?An invitation to metaheuristics – p. 26

The fitness landscape

S , F(S)
1 1

S , F(S)
4 4

S , F(S)
5 5

S , F(S)
3 3S , F(S)

2 2

How to solve it?An invitation to metaheuristics – p. 27

Escaping strategies...

Problem: Iterative Improvement stops at local minima,
which can be very “poor”.

⇒ Strategies are required to prevent the search from
getting trapped in local minima and to escape from them

How to solve it?An invitation to metaheuristics – p. 28

Three basic ideas

1) Accept up-hill moves

i.e., the search moves toward a solution with a worse
objective function value

How to solve it?An invitation to metaheuristics – p. 29

Three basic ideas

1) Accept up-hill moves

i.e., the search moves toward a solution with a worse
objective function value

Intuition: climb the hills and go downward in another
direction

How to solve it?An invitation to metaheuristics – p. 29

Three basic ideas

2) Change neighborhood structure during the search

How to solve it?An invitation to metaheuristics – p. 30

Three basic ideas

2) Change neighborhood structure during the search

Intuition: different neighborhoods generate different search
space topologies

How to solve it?An invitation to metaheuristics – p. 30

Three basic ideas

3) Change the objective function so as to “fill-in”
local minima

How to solve it?An invitation to metaheuristics – p. 31

Three basic ideas

3) Change the objective function so as to “fill-in”
local minima

Intuition: modify the search space with the aim of making
more “desirable” not yet explored areas

How to solve it?An invitation to metaheuristics – p. 31

Trajectory methods

The search process is characterized by a trajectory in
the search space

The search process can be seen as the evolution in
(discrete) time of a discrete dynamical system

Examples: Tabu Search, Simulated Annealing, Iterated
Local Search, ...

How to solve it?An invitation to metaheuristics – p. 32

Simulated Annealing

Simulated Annealing exploits the first idea: accept also up-hill
moves

Origins in statistical mechanics (Metropolis algorithm)

It allows moves resulting in solutions of worse quality
than the current solution

The probability of doing such a move is decreased
during the search

How to solve it?An invitation to metaheuristics – p. 33

Simulated Annealing

Simulated Annealing exploits the first idea: accept also up-hill
moves

Origins in statistical mechanics (Metropolis algorithm)

It allows moves resulting in solutions of worse quality
than the current solution

The probability of doing such a move is decreased
during the search

Usually, p(accept up-hill moves′) = exp(− f(s′)−f(s)
T

)

How to solve it?An invitation to metaheuristics – p. 33

SA: High-level algorithm

s← GenerateInitialSolution()
T ← T0

while termination conditions not met do
s′ ← PickAtRandom(N (s))

if f(s′) < f(s) then
s← s′{s′ replaces s}

else
Accept s′ as new solution with probability p(T, s′, s)

end if
Update(T)

end while

How to solve it?An invitation to metaheuristics – p. 34

Cooling schedules

The temperature T can be varied in different ways:

Logarithmic: Tk+1 = Γ
log(k+k0)

.
The algorithm is guaranteed to converge to the optimal
solution with probability 1. Too slow for applications

Geometric: Tk+1 = αTk, where α ∈]0, 1[

Non-monotonic: the temperature is decreased
(intensifications is favored), then increased again (to
increase diversification)

How to solve it?An invitation to metaheuristics – p. 35

Tabu Search

Tabu Search exploits the second idea: change neighborhood
structure.

Explicitly exploits the search history to dynamically
change the neighborhood to explore

Tabu list : keeps track of recent visited solutions or moves
and forbids them⇒ escape from local minima and no
cycling

Many important concepts developed “around” the basic
TS version (e.g., general exploration strategies)

How to solve it?An invitation to metaheuristics – p. 36

High-level algorithm

s← GenerateInitialSolution()
TabuList← ∅
while termination conditions not met do

s← ChooseBestOf(s ∪ N (s) \ TabuList)
Update(TabuList)

end while

How to solve it?An invitation to metaheuristics – p. 37

Tabu Search

Storing a list of solutions is often inefficient, therefore
moves are stored instead.

How to solve it?An invitation to metaheuristics – p. 38

Tabu Search

Storing a list of solutions is often inefficient, therefore
moves are stored instead.

BUT: storing moves we could cut good not yet visited
solutions

How to solve it?An invitation to metaheuristics – p. 38

Tabu Search

Storing a list of solutions is often inefficient, therefore
moves are stored instead.

BUT: storing moves we could cut good not yet visited
solutions

⇓

we use ASPIRATION CRITERIA (e.g., accept a forbidden
move toward a solution better than the current one)

How to solve it?An invitation to metaheuristics – p. 38

High-level algorithm

s← GenerateInitialSolution()
InitializeTabuLists(TL1, . . . , TLr)
k ← 0
while termination conditions not met do

AllowedSet(s, k)← {z ∈ N (s) | no tabu condition is
violated or at least one aspiration condition is satisfied}
s← ChooseBestOf(s ∪ AllowedSet(s, k))
UpdateTabuListsAndAspirationConditions()
k ← k + 1

end while

How to solve it?An invitation to metaheuristics – p. 39

Guided Local Search

GLS exploits the third idea: dynamically change the
objective function.

Basic principle: help the search to move out gradually
from local optima by changing the search landscape

The objective function is dynamically changed with the
aim of making the current local optimum “less desirable”

How to solve it?An invitation to metaheuristics – p. 40

Guided Local Search

GLS penalizes solutions which contains some defined
features (e.g., arcs in a tour, unsatisfied clauses, etc.)

If feature i is present in solution s, then Ii(s) = 1, otherwise
Ii(s) = 0

How to solve it?An invitation to metaheuristics – p. 41

Guided Local Search

Each feature i is associated a penalty pi which weights the
importance of the features.

The objective function f is modified so as to take into
account the penalties.

How to solve it?An invitation to metaheuristics – p. 42

Guided Local Search

Each feature i is associated a penalty pi which weights the
importance of the features.

The objective function f is modified so as to take into
account the penalties.

f
′

(s) = f(s) + λ
∑m

i=1 pi · Ii(s)

How to solve it?An invitation to metaheuristics – p. 42

Guided Local Search

Each feature i is associated a penalty pi which weights the
importance of the features.

The objective function f is modified so as to take into
account the penalties.

f
′

(s) = f(s) + λ
∑m

i=1 pi · Ii(s)

λ scales the contribution of the penalties wrt to the original
objective function

How to solve it?An invitation to metaheuristics – p. 42

High-Level Algorithm

s← GenerateInitialSolution()
while termination conditions not met do

s← LocalSearch(s, f
′

)
for all selected features i do

pi ← pi + 1
end for
Update(f ′,p){where p is the penalty vector}

end while

How to solve it?An invitation to metaheuristics – p. 43

Lessons learnt

The effectiveness of a metaheuristic strongly depends
on the dynamical interplay of intensification and
diversification

General search strategies have to be applied to
effectively explore the search space

The use of search history characterizes the nowadays
most effective algorithms

Optimal parameter tuning is crucial and sometimes very
difficult to achieve

How to solve it?An invitation to metaheuristics – p. 44

Trajectory methods

Other important trajectory methods:

Variable neighborhood search (along with variants)

Iterated local search

How to solve it?An invitation to metaheuristics – p. 45

Population-based methods

Population-based metaheuristics perform search
processes which describes the evolution of a set of
points in the search space.

How to solve it?An invitation to metaheuristics – p. 46

Population-based methods

Population-based metaheuristics perform search
processes which describes the evolution of a set of
points in the search space.

Some are inspired by natural processes, such as
natural evolution and social insects foraging behavior.

How to solve it?An invitation to metaheuristics – p. 46

Population-based methods

Population-based metaheuristics perform search
processes which describes the evolution of a set of
points in the search space.

Some are inspired by natural processes, such as
natural evolution and social insects foraging behavior.

Basic principle: learning correlations between “good”
solution components

How to solve it?An invitation to metaheuristics – p. 46

Population-based methods

Evolutionary Algorithms
Evolutionary Programming
Evolution Strategies
Genetic Algorithms

Ant Colony Optimization

Scatter Search

Population-Based Incremental Learning

Estimation of Distribution Algorithms

How to solve it?An invitation to metaheuristics – p. 47

The basic principle

Model-based search : Candidate solutions are generated
using a parametrized probabilistic model, updated using the
previously seen solutions in such a way that the search will
concentrate in the regions containing high quality solutions.

How to solve it?An invitation to metaheuristics – p. 48

The basic principle

MODEL SAMPLE

MEMORY

AUXILIARY
LEARNING

How to solve it?An invitation to metaheuristics – p. 49

Evolutionary Algorithms

Inspired by Nature’s capability to evolve living beings
well adapted to their environment

Computational models of evolutionary processes

How to solve it?An invitation to metaheuristics – p. 50

The Evolutionary Cycle

Population

Parents

Offspring

Recombination

Selection

Replacement

Mutation

How to solve it?An invitation to metaheuristics – p. 51

High-level algorithm

P ← GenerateInitialPopulation()
Evaluate(P)
while termination conditions not met do

P ′ ← Recombine(P)
P ′′ ← Mutate(P ′)
Evaluate(P ′′)
P ← Select(P ′′ ∪ P)

end while

How to solve it?An invitation to metaheuristics – p. 52

Ant Colony Optimization

Population-based metaheuristic inspired by the foraging
behavior of ants. Ants can find the shortest path between the
nest and a food source.

While walking ants deposit a substance called
pheromone on the ground.

When they decide about a direction to go, they choose
with higher probability paths that are marked by stronger
pheromone concentrations.

This basic behavior is the basis for a cooperative
interaction which leads to the emergence of shortest
paths.

How to solve it?An invitation to metaheuristics – p. 53

Ant foraging behavior

(1) (3)

(2) (4)

How to solve it?An invitation to metaheuristics – p. 54

Ant Colony Optimization

ACO algorithms are based on a parametrized probabilistic
model – the pheromone model – that is used to model the
chemical pheromone trails.

Artificial ants incrementally construct solutions by adding
opportunely defined solution components to a partial
solution under consideration

Artificial ants perform randomized walks on the construction
graph: a completely connected graph G = (C,L).

How to solve it?An invitation to metaheuristics – p. 55

ACO construction graph

G = (C,L)

vertices are the solution components C

L are the connections

states are paths in G.

Solutions are states, i.e., encoded as paths on G

Constraints are also provided in order to construct feasible
solutions

How to solve it?An invitation to metaheuristics – p. 56

Example

One possible TSP model for ACO:

- nodes of G (the components) are the cities to be visited;

- states are partial or complete paths in the graph;

- a solution is an Hamiltonian tour in the graph;

- constraints are used to avoid cycles (an ant can not visit
a city more than once).

How to solve it?An invitation to metaheuristics – p. 57

Sources of information

Connections, components (or both) can have
associated pheromone trail and heuristic value.

Pheromone trail takes the place of natural pheromone
and encodes a long-term memory about the whole ants’
search process

Heuristic represents a priori information about the
problem or dynamic heuristic information (in the same
way as static and dynamic heuristics are used in
constructive algorithms).

How to solve it?An invitation to metaheuristics – p. 58

Ant system

First ACO example

Ants construct a solution by building a path along the
construction graph

The transition rule is used to choose the next node to
add

Both heuristic and pheromone are used

The pheromone values are updated on the basis of the
quality of solutions built by the ants

How to solve it?An invitation to metaheuristics – p. 59

Ant system

The probability of moving from city i to city j for ant k is:

pk
ij =

[τij]
α[ηij]

β

P

k∈feasiblek
[τik]α[ηik]β

if j ∈ feasiblek

0 otherwise

α e β weight the relative influence of pheromone and heuristic

How to solve it?An invitation to metaheuristics – p. 60

Ant System

Pheromone update rule:

τij ← (1− ρ) · τij +

m
∑

k=1

∆τk
ij

∆τk
ij =

{

1
Lk

if ant k used arc (i, j)

0 otherwise

ρ is the evaporation coefficient; Lk is the length of the tour
built by ant k.

How to solve it?An invitation to metaheuristics – p. 61

High-level algorithm

while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() {optional}

end ScheduleActivities
end while

How to solve it?An invitation to metaheuristics – p. 62

Research lines

Algorithm behavior
Theoretical approach (markov, dynamical systems,
landscape properties)
Empirical approach(scientific method, statistics)

Problem structure vs. algorithm behavior

Integration with complete algorithms

Software engineering approach (tools, multi-agent
systems)

Parallelization

How to solve it?An invitation to metaheuristics – p. 63

Dynamical systems

Execution of an algorithm↔ dynamics of a (stochastic)
dynamical system

Attractors↔ stagnation
Local minimum: fixed point
“Trap”: cyclic attractor
????: chaotic attractor

How to solve it?An invitation to metaheuristics – p. 64

Dynamical systems

More complex dynamics

Basins of attraction→ are optima reachable? Which is
the probability to reach them from a random initial state
(heuristic solution)?

How to solve it?An invitation to metaheuristics – p. 65

Dynamical systems

Advantages:

Convergence proofs

Estimation of completeness probability

Dynamic parameter tuning (no more rule of thumbs...)

How to solve it?An invitation to metaheuristics – p. 66

Problem structure vs. algorithm behavior

The impact of structure – whatever it is – on search
algorithms is relevant, especially for the so-called ‘real-world
problems’.

Identify most difficult instances (for a given algorithm)

Understand why an instance is difficult

Exploit this information to choose the best solver, or a
combination of solvers

Evaluate the quality of benchmarks

How to solve it?An invitation to metaheuristics – p. 67

Structure

Diverse meanings

Structure vs. random

Usually real world problems are said to be structured

Attempts to define quantitative measures (entropy,
compression ratio, etc.)

How to solve it?An invitation to metaheuristics – p. 68

Structure

Diverse meanings

Structure vs. random

Usually real world problems are said to be structured

Attempts to define quantitative measures (entropy,
compression ratio, etc.)

◮
Graph representation of relations among
problem entities

How to solve it?An invitation to metaheuristics – p. 68

Graph prop. vs search

Node degree distribution & ‘multi-flip’ local search

Small-world & instance hardness

How to solve it?An invitation to metaheuristics – p. 69

Metaheuristics and systematic methods

1. Metaheuristics are applied before systematic methods,
providing a valuable input, or vice versa.

2. Metaheuristics use CP and/or tree search to efficiently
explore the neighborhood.

3. A “tree search”-based algorithm applies a metaheuristic
in order to improve a solution (i.e., a leaf of the tree) or a
partial solution (i.e., an inner node). Metaheuristic
concepts can also be used to obtain incomplete but
efficient tree exploration strategies.

How to solve it?An invitation to metaheuristics – p. 70

	Prologue
	Prologue
	Prologue

	Prologue
	Goals
	Outline
	{COP}
	COP
	COP
	COP

	TSP
	TSP
	Solving algorithms
	Complete algorithms
	Approximate algorithms
	Metaheuristics
	Metaheuristics
	Metaheuristics

	Etymology
	Metaheuristics
	Heuristic construction
	Heuristic construction
	Heuristic construction

	Local search
	Preliminary definitions
	Preliminary definitions

	Neighborhood: Examples
	Neighborhood: Examples
	Iterative Improvement
	A pictorial view
	High-level algorithm
	The fitness landscape
	The fitness landscape
	The fitness landscape
	Escaping strategies...
	Three basic ideas
	Three basic ideas

	Three basic ideas
	Three basic ideas

	Three basic ideas
	Three basic ideas

	Trajectory methods
	Simulated Annealing
	Simulated Annealing

	SA: High-level algorithm
	Cooling schedules
	Tabu Search
	High-level algorithm
	Tabu Search
	Tabu Search
	Tabu Search

	High-level algorithm
	Guided Local Search
	Guided Local Search
	Guided Local Search
	Guided Local Search
	Guided Local Search

	High-Level Algorithm
	Lessons learnt
	Trajectory methods
	Population-based methods
	Population-based methods
	Population-based methods

	Population-based methods
	The basic principle
	The basic principle
	Evolutionary Algorithms
	The Evolutionary Cycle
	High-level algorithm
	Ant Colony Optimization
	Ant foraging behavior
	Ant Colony Optimization
	ACO construction graph
	Example
	Sources of information
	Ant system
	Ant system
	Ant System
	High-level algorithm
	Research lines
	Dynamical systems
	Dynamical systems
	Dynamical systems
	Problem structure vs. algorithm behavior
	Structure
	Structure

	Graph prop. vs search
	Metaheuristics and systematic methods

