
Evolutionary Computation

DEIS-Cesena
Alma Mater Studiorum Università di Bologna

Cesena (Italia)

andrea.roli@unibo.it

Evolutionary Computation

Inspiring principle: theory of natural selection

“Species face the problem of searching for beneficial
adaptations to the environment. The knowledge that each
species has gained is embodied in the makeup of the
chromosomes of its members.” (Davis, Genetic Algorithms and
Simulated Annealing, 1987)

Example: rabbits. . .

Evolutionary Computation

Evolutionary Computation (EC) encompasses:

• Genetic Algorithms

• Genetic Programming

• Evolution Strategies

• Estimation of Distribution Algorithms

Characteristics

• Robustness

• Adaptivity

• Subsymbolic models
(no explicit symbolic computation)

Objectives

• Problem solving

• Optimization

• Adaptive systems design

• Simulation

Some applications

⊲ System design (e.g., airplanes, electronic circuits,
mechanical elements)

⊲ Neural network training (e.g., robotics)

⊲ Signal processing (e.g., artificial vision)

⊲ Optimization (discrete and continuous)

More applications

⊲ Time series analysis and forecasting (e.g., financial
forecasting)

⊲ Artificial Life (e.g., cellular automata, analysis of complex
adaptive systems)

⊲ Games (e.g., Prisoner’s Dilemma)

Challenge: find a problem where EC has NOT been applied!

Genetic Algorithms

The Metaphor

NATURAL EVOLUTION ARTIFICIAL SYSTEMS
Individual ↔ A possible solution
Fitness ↔ Quality

Environment ↔ Problem

A bit of terminology

• A population is the set of individuals (solutions)

• Individuals are also called genotypes or chromosomes (if
one solution↔ one chromosome)

• Chromosomes are made of units called genes
• The domain of values of a gene is composed of alleles

(e.g., a binary variable/gene has two alleles)

The Evolutionary Cycle

POPULATION

PARENTS
SELECTION

RECOMBINATION

MUTATION

OFFSPRING
REPLACEMENT

Genetic operators

• Mutation

• Recombination

• Selection

• Replacement/insertion

Genetic operators

⊲ EC algorithms define a basic computational procedure which
uses the genetic operators.

⊲ The definition of the genetic operators specifies the actual
algorithm.

⊲ The definition of the genetic operators depends upon the
problem at hand.

Genetic Algorithms

Developed by John Holland (early ’70) with the aim of:

• Understand adaptive processes of natural systems

• Design robust (software) artificial systems

Simple Genetic Algorithm

• Derived from the natural metaphor

• Very simple model

• ‘Programming oriented’

You can take it as a first step toward evolutionary algorithms in
general

Simple Genetic Algorithm

Solutions are coded as bit strings

0 0 0 1 01 1 1 1 1

CHROMOSOME

GENE

Integer

Plan

Real

Rules

.....

GENOTYPE PHENOTYPE

Example

Optimization of a function of integer variable x ∈ [0, 100]:

• binary coding→ string of 7 bit

• 4 bits per digit→ string of 12 bit

Genetic operators (1)

Mutation: each gene has probability pM of being modified
(’flipped’)

0 0 0 1 01 1 0 1 1

0 0 0 1 01 1 1 1 1

Genetic operators (2)

Crossover: cross-combination of two chromosomes (loosely
resembling human crossover)

1 1 0 01 0 0 0 1 0 1 1 0 01 0

0 1 1 1

0 1 1 1

0 0 1 00 0 0 11 10 0 0 11 1

Genetic operators (3)

Selection acts in the choice of parents and produces the
mating pool .

→ Proportional selection: the probability for an individual to
be chosen is proportional to its fitness.

Genetic operators (3)

Roulette wheel

50%
10%

10%

25%

5%

I1 50
I2 25
I3 10
I4 10
I5 5

Genetic operators (4)

Generational replacement: The new generation replaces
entirely the old one.

• Advantage: very simple, computationally not (extremely)
expensive, easier theoretical analysis.

• Disadvantage: we could loose good solutions

High-level algorithm

Initialize Population
Evaluate Population
while Termination conditions not met do

while New population not completed do
Select two parents for mating
Apply crossover
Apply mutation to each new individual

end while
Population← New population
Evaluate Population

end while

Termination conditions

The basic question is: when to stop?

• Execution time limit reached

• We are satisfied with the solution(s) obtained

• Stagnation (limit: the population converged to the same
individual)

Simple Genetic Algorithm

Initialize Population{Npop individuals X1, . . . , XNpop}
for i = 1 to Npop do

Xi ← InitialSolution() {e.g., random}
end for

Evaluate Population{Individual Xi has fitness Fi}
for i = 1 to Npop do

Fi ← Eval(Xi)
end for

Simple Genetic Algorithm

Select parents: G1, G2{Roulette wheel selection}
lung ← 0
for i = 1 to Npop do {all fitness values are summed up}

lung ← lung + Fi

end for
for m = 1 to 2 do

r ← Random(0,lung); sum← 0; i ← 1
while i < Npop AND sum < r do

sum← sum + Fi ; i ← i + 1
end while
Gm ← Xi

end for

Simple Genetic Algorithm

Apply crossover: from G1, G2 we get G′

1, G′

2

r ← Random(1,lchromosome){crossover point}
for i = 1 to r − 1 do

G′

1[i]← G1[i]
G′

2[i]← G2[i]
end for
for i = r to lchromosome do

G′

1[i]← G2[i]
G′

2[i]← G1[i]
end for

Simple Genetic Algorithm

Apply mutation to individual X
for i = 1 to lchromosome do

r ← Random(0,1)
if r ≤ pM then

Complement X [i]
end if

end for

Fitness Landscape

Representation of the space of all possible genotypes, along
with their fitness.

Fitness Landscape

Caution!

• Different landscapes for different operators

• In many cases fitness landscapes are dynamic

• Landscape ‘intuition’ might be misleading

• Use of term local optimum used and abused everywhere

Why does it work?

Intuition:

• Crossover combines good parts from good solutions (but it
might also destroy. . . sometimes)

• Mutation introduces diversity

• Selection drives the population toward high fitness

Why does it work?

Holland explains (also theoretically, but with strong hypotheses)
why the SGA ’works’

Two basic elements:

• Schemata
• Building blocks

Schemata

• A schema is a kind of mask: 001 ∗ 1 ∗ ∗0

• The symbol ∗ represents a wildcard: both 0 and 1 fit

• E.g., 1 ∗ 0 represents 100 and 110

Building blocks

• A building block is a pattern of contiguous bits

• HP: good solutions are composed of good building blocks

• The crossover puts together short building blocks and
destroys large ones

Implicit parallelism

• Every individual corresponds to a set of schemata

• The number of the best schemata increases exponentially

• The solution space is searched through schemata (hence
implicit parallelism)

When does it work well?

A SGA works well if:

1 Short good building blocks (correlate genes are adjacent)

2 Loose interaction among genes (low epistasis)

SGA: pros and cons

Pros:

• Extremely simple

• General purpose

• Theoretical models

Cons:

• Coding

• Too simple genetic operators

A recipe

The ingredients to prepare a GA:

• Solution coding (e.g., bit strings, programs, arrays of real
variables, etc.)

• Define a way of evaluating solutions (e.g., objective function
value, result of a program, behavior of a system, etc.)

• Define recombination operators (crossover , mutation)

• Define the selection and replacement/insertion mechanisms

Toward less simple GA

Recombination:

• Multi-point crossover (recombination of more than 2
“pieces” of chromosomes)

• Multi-parent crossover (an individual is generated by more
than 2 parents)

• Uniform crossover (children created by randomly shuffling
the parent variables at each site)

Multi-point crossover

111

1 0 0 0 1 0

0 1 1 1

0 0 1 01 0 0 0 0 11 1

0 0 01 1

1 1 0 01 0

Multi-parent crossover

1 1 0 0

0 1 1 0

0 0 1 0

0 1 1 1

1

00 1

1 1

0 1

0 0 0

1

0 0

1 0

1 0 1 01 0

1 1 0

0 1 1

0 1 1

1 1 01 0

11

1 1 0 1 1 0

Toward less simple GA

Mutation:

• Learning applied to modify the chromosome

• In optimization, hill-climbing or more complex local search
algorithms can be applied

Interesting topic: Evolution & Learning,
www.cogs.susx.ac.uk/users/ezequiel/alife-page/evolearn.html

Toward less simple GA

Selection:

• Different probability distribution (e.g., probability
distribution based on the ranking of individuals)

• Tournament Selection (iteratively pick two or more
individuals and put in the mating pool the fittest)

Ex: real valued variables

- Solution: x ∈ [a, b], a, b ∈ R

- Mutation: random perturbation x → x ± δ, accepted if
x ± δ ∈ [a, b]

- Crossover: linear combination z = λ1x + λ2y , with λ1, λ2

such that a ≤ z ≤ b.

Example: permutations

- Solution: x = (x1, x2, . . . , xn) is a permutation of
(1, 2, . . . , n)

- Mutation: random exchange of two elements in the n-ple

- Crossover: like 2-point crossover, but avoiding value
repetition (see next example).

Eight Queens

Place 8 queens on a 8× 8 chessboard in such a way that the
queens cannot attack each other.

Eight Queens

Genotype: a permutation of the numbers 1 through 8

7 13 2 4 6 5 8

Eight Queens

Mutation: exchanging two numbers

21 11 3 5 4 8 7 2 3 5 8 74 1

Eight Queens

Crossover: combining two parents

7

1

8 7

5

6

8 7 6 5 4 3 2

3 5 2 6 41

8 7 6 2 4 1 3

3 5 4 2 81

Eight Queens

Fitness: penalty of a queen is the number of queens it can
check.

The fitness of the configuration is the sum of the single
penalties.

Genetic Programming

• Can be seen as a ‘variant’ of GA: individuals are programs
• Used to build programs that solve the problem at hand (⇒

specialized programs)

• Extended to automatic design in general (e.g., controllers
and electronic circuits)

Genetic Programming

Individuals are trees which encode programs.

>

1

+

2 IF

3 4

T 6

Fitness given by the evaluation of the program “behavior”
(based upon some defined criteria)

Operators

Mutation: Random selection of a subtree which is substituted
by a well formed random generated subtree

>

1

+

2 IF

3 4

6T

>

6*

1

+

2 IF

3 4

2Y

Operators

Crossover: Exchange two randomly picked subtrees.

4

+

4

+

5

5>

+

2 IF

3 4

T 6

>

IF

3 4

T 6

IF

<

1

+

2

2

IF

<

1

2

Operators

Selection and replacement

Fitness is evaluated depending on the application.

• For assembler worms the fitness can be the memory they
occupied.

• For controllers, the fitness can be the percentage of correct
actions

The realm of GP

• Black art problems. E.g.,automated synthesis of analog
electrical circuits, controllers, antennas, and other areas of
design

• Programming the unprogrammable, involving the automatic
creation of computer programs for unconventional computing
devices. E.g.,cellular automata, parallel systems, multi-agent
systems, etc.

Coevolution

Species evolve in the same environment

→ dynamic environment

Two kinds:

• Competitive

• Cooperative

Competitive Coevolution

⊲ Species evolve trying to face each other

• E.g., prey/predator, herbivore/plants.

Applications: ALU design for Cray computer, (pseudo-)random
number generator.

Cooperative Coevolution

⊲ Species evolve complementary capabilities to survive in their
environment

• E.g., host/parasite.

Applications: ‘niche’ genetic algorithms for multi-criteria
optimization.

EC and Artificial Life

Tierra

• Artificial evolution of computer programs (T. Ray, early
’90s)

• Environment: virtual computer

• Individuals: self-replicating assembler programs

• Resources: CPU time and memory

Tierra

Results of evolution: several kinds of nontrivial behaviors and
dynamics

• parasites

• immunity to parasites

• circumvention of immunity to parasites

• social individuals

• . . . and others

EC and Games

Axelrod and The Prisoner’s Dilemma

• Game strategies evolved through genetic algorithms

• Dynamic environment (a player plays against other
different players)

• Best strategy evolved by GA is the best human strategy

• Analysis of the arising of cooperation

The Prisoner’s Dilemma

• The two players in the game can choose between two
moves, either cooperate or defect .

• Each player gains when both cooperate, but if only one of
them cooperates, the other one, who defects, will gain
more.

• If both defect, both lose (or gain very little) but not as much
as the ”cheated” cooperator whose cooperation is not
returned.

The payoff matrix

Action of A \ Action of B Cooperate Defect
Cooperate +5 −10
Defect +10 0

Problem encoding

Suppose that the memory of each player is one previous move.
E.g., player A cooperated and player B defected becomes: CD.

The strategy is defined with a move for each possible past
move. E.g.:

If CC then C
If CD then D
If DC then C
If DD then D

→ the string is CDCD

Classifier Systems

Systems composed of rules like

IF [conditions] THEN [actions]

IF (sensor1 is active) THEN (move)
IF (sensor3 is inactive and sensor4 is active) THEN (stop)
IF (sensor4 is inactive) THEN (turn right)

Rules are usually coded as bitstrings and evolved by means of
usual application of EC operators.

Classifier Systems

MESSAGES

REINFORCE

ACTIONS

ENVIRONMENT

CLASSIFIER

SYSTEM

Classifier Systems

Some references

• M.Mitchell. Genetic Algorithms. MIT Press, 1999.

• Z.Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs, Springer, 1992.

• D.E.Golberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, 1989.

• W.B.Langdon, R.Poli. Foundations of Genetic
Programming. Springer, 2001.

