Evolutionary computation

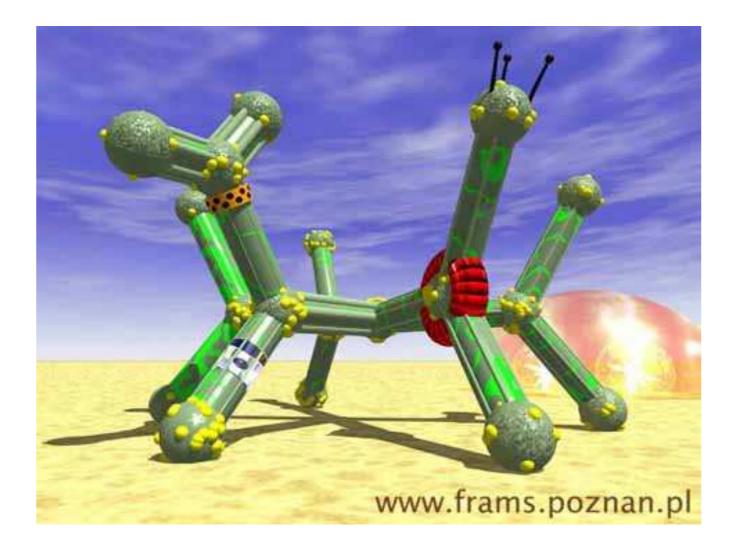
Andrea Roli

andrea.roli@unibo.it

DEIS

Alma Mater Studiorum Università di Bologna

Evolutionary Computation



Evolutionary Computation

Inspiring principle: theory of **natural selection**

"Species face the problem of searching for beneficial adaptations to the environment. The *knowledge* that each species has gained is embodied in the makeup of the chromosomes of its members." (Davis, *Genetic Algorithms and Simulated Annealing*, 1987)

Example: rabbits...

Evolutionary Computation

Evolutionary Computation (EC) encompasses:

- Genetic Algorithms
- Genetic Programming
- Evolution Strategies
- Estimation of Distribution Algorithms

Objectives

- Problem solving
- Optimization
- Adaptive systems design
- Simulation

Some applications

- System design (e.g., airplanes, electronic circuits, mechanical elements)
- Neural network training (e.g., robotics)
- Signal processing (e.g., artificial vision)
- Optimization (discrete and continuous)

More applications

- Time series analysis and forecasting (e.g., financial forecasting)
- Artificial Life (e.g., cellular automata, analysis of complex adaptive systems)
- ▷ Games (e.g., Prisoner's Dilemma)

Challenge: find a problem where EC has NOT been applied!

Genetic Algorithms

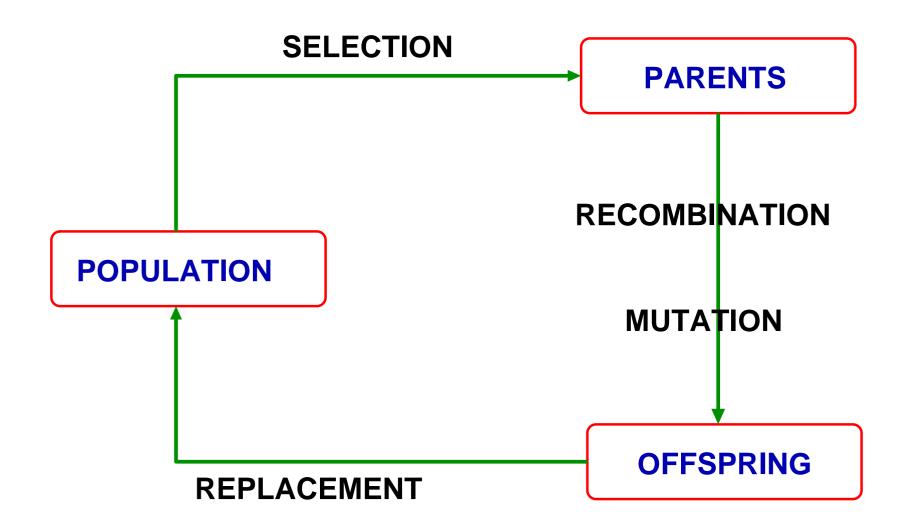
The Metaphor

NATURAL EVOLUTION		ARTIFICIAL SYSTEMS
Individual	\leftrightarrow	A possible solution
Fitness	\leftrightarrow	Quality
Environment	\leftrightarrow	Problem

A bit of terminology

- A population is the set of individuals (solutions)
- Individuals are also called genotypes or chromosomes (if one solution ↔ one chromosome)
- Chromosomes are made of units called genes
- The domain of values of a gene is composed of alleles (e.g., a binary variable/gene has two alleles)

The Evolutionary Cycle



Genetic operators

- Mutation
- Recombination
- Selection
- Replacement/insertion

Genetic operators

EC algorithms define a basic computational procedure which uses the genetic operators.

The definition of the genetic operators specifies the actual algorithm.

The definition of the genetic operators depends upon the problem at hand.

Genetic Algorithms

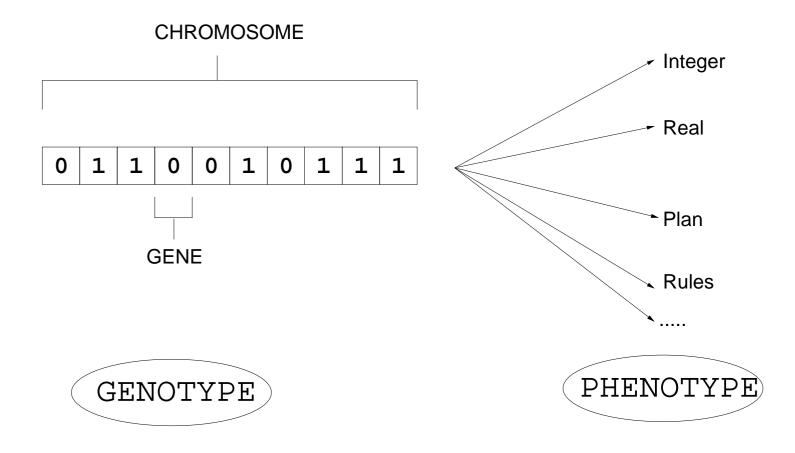
Developed by John Holland (early '70) with the aim of:

- Understand adaptive processes of natural systems
- Design robust (software) artificial systems

- Derived from the natural metaphor
- Very simple model
- 'Programming oriented'

You can take it as a first step toward evolutionary algorithms in general

Solutions are coded as **bit strings**



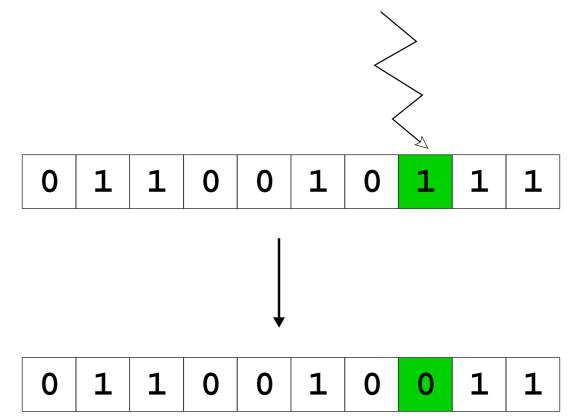
Example

Optimization of a function of integer variable $x \in [0, 100]$:

- binary coding \rightarrow string of 7 bit
- 4 bits per digit \rightarrow string of 12 bit

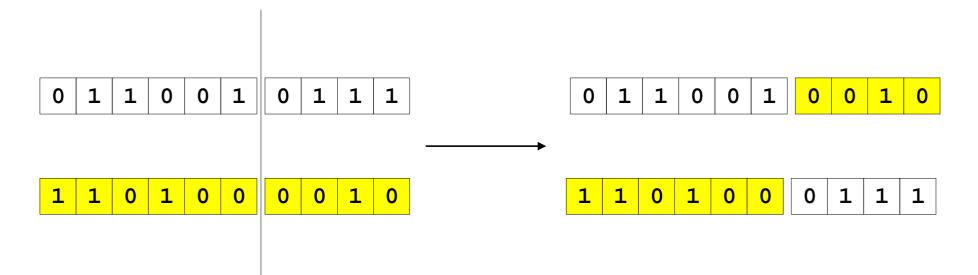
Genetic operators (1)

Mutation: each gene has probability p_M of being modified ('flipped')



Genetic operators (2)

Crossover: cross-combination of two chromosomes (loosely resembling human crossover)

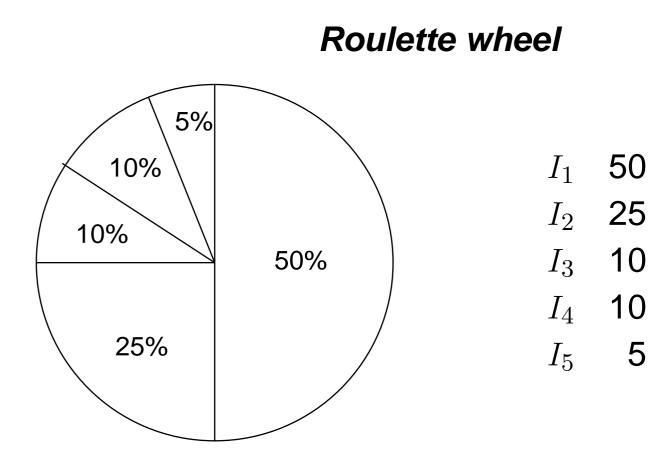


Genetic operators (3)

Selection acts in the choice of parents and produces the *mating pool*.

 \rightarrow **Proportional selection**: the probability for an individual to be chosen is proportional to its fitness.

Genetic operators (3)



Genetic operators (4)

Generational replacement: The new generation replaces entirely the old one.

- Advantage: very simple, computationally not (extremely) expensive, easier theoretical analysis.
- Disadvantage: we could loose good solutions

High-level algorithm

Initialize Population Evaluate Population while Termination conditions not met do while New population not completed do Select two parents for mating Apply crossover Apply mutation to each new individual end while Population ← New population **Evaluate Population** end while

Termination conditions

The basic question is: when to stop?

- Execution time limit reached
- We are satisfied with the solution(s) obtained
- Stagnation (limit: the population converged to the same individual)

Initialize Population{ N_{pop} individuals $X_1, \ldots, X_{N_{pop}}$ } for i = 1 to N_{pop} do $X_i \leftarrow$ InitialSolution() {e.g., random} end for

Evaluate Population{Individual X_i has fitness F_i } for i = 1 to N_{pop} do $F_i \leftarrow \text{Eval}(X_i)$ end for

Select parents: G_1, G_2 {Roulette wheel selection}

 $lung \leftarrow 0$

for i = 1 to N_{pop} do {all fitness values are summed up} $lung \leftarrow lung + F_i$

end for

for m = 1 to 2 do $r \leftarrow \mathsf{Random}(0, lung)$; $sum \leftarrow 0$; $i \leftarrow 1$ while $i < N_{pop}$ AND sum < r do $sum \leftarrow sum + F_i$; $i \leftarrow i + 1$ end while $G_m \leftarrow X_i$ end for

Apply crossover: from G_1, G_2 we get G'_1, G'_2

 $r \leftarrow \mathsf{Random}(1, l_{chromosome})\{\mathsf{crossover point}\}$

for i = 1 to r - 1 do

 $G_1'[i] \leftarrow G_1[i]$ $G_2'[i] \leftarrow G_2[i]$

end for

for i = r to $l_{chromosome}$ do $G'_1[i] \leftarrow G_2[i]$ $G'_2[i] \leftarrow G_1[i]$

end for

Apply mutation to individual X for i = 1 to $l_{chromosome}$ do $r \leftarrow \text{Random}(0,1)$ if $r \leq p_M$ then Complement X[i]end if end for

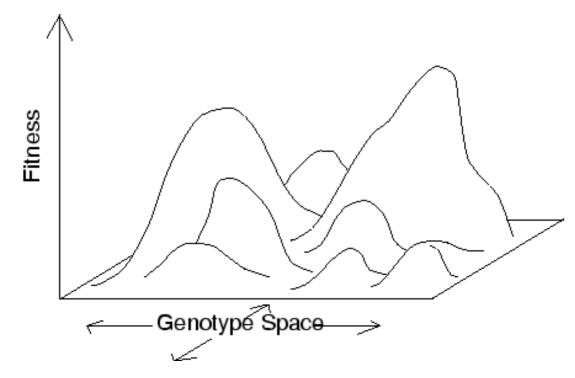
SGA: Example

Maximization of a real function

Taken from: http://www.evonet.polytechnique.fr/CIRCUS2/

Fitness Landscape

Representation of the space of all possible genotypes, along with their fitness.



Fitness Landscape

Caution!

- Different landscapes for different operators
- In many cases fitness landscapes are dynamic
- Landscape 'intuition' might be misleading
- Use of term *local optimum* used and abused everywhere

Why does it work?

Intuition:

- Crossover combines good parts from good solutions (but it might also destroy... sometimes)
- Mutation introduces diversity
- Selection drives the population toward high fitness

SGA: pros and cons

Pros:

- Extremely simple
- General purpose
- Theoretical models

Cons:

- Coding
- Too simple genetic operators

A recipe

The ingredients to prepare a GA:

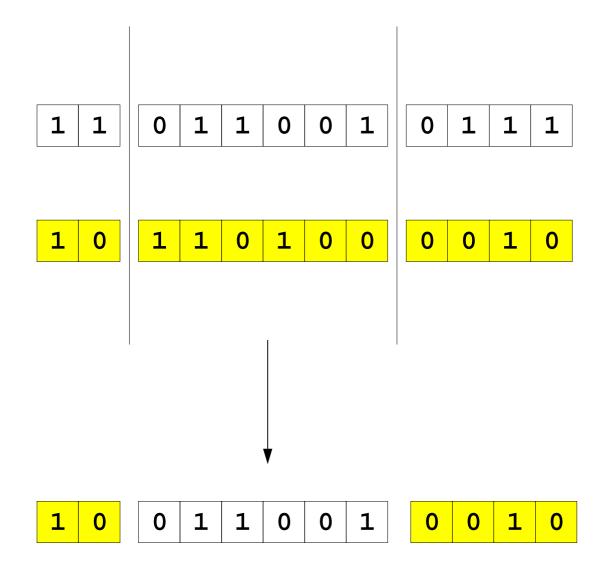
- Solution coding (e.g., bit strings, programs, arrays of real variables, etc.)
- Define a way of evaluating solutions (e.g., objective function value, result of a program, behavior of a system, etc.)
- Define recombination operators (crossover, mutation)
- Define the selection and replacement/insertion mechanisms

Toward less simple GA

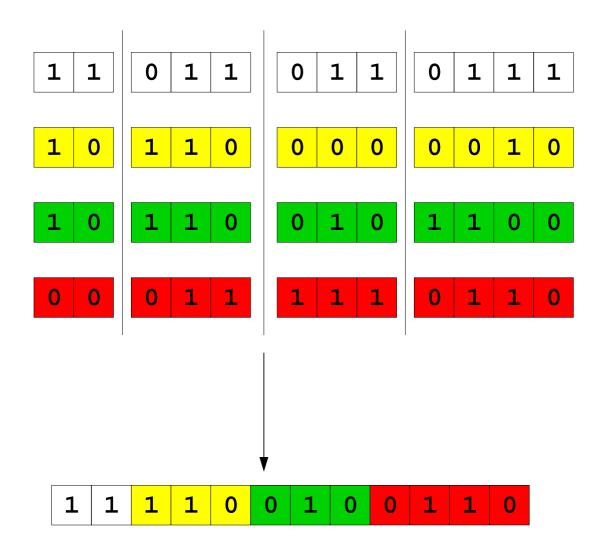
Recombination:

- Multi-point crossover (recombination of more than 2 "pieces" of chromosomes)
- Multi-parent crossover (an individual is generated by more than 2 parents)
- Uniform crossover (children created by randomly shuffling the parent variables at each site)

Multi-point crossover



Multi-parent crossover



Toward less simple GA

Mutation:

- Learning applied to modify the chromosome
- In optimization, hill-climbing or more complex local search algorithms can be applied

Interesting topic: Evolution & Learning,

www.cogs.susx.ac.uk/users/ezequiel/alife-page/evolearn.html

Toward less simple GA

Selection:

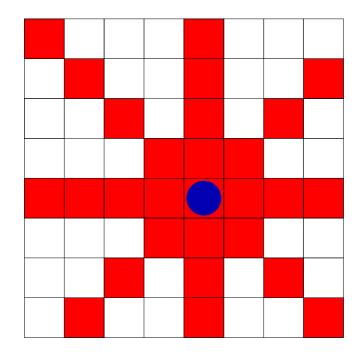
- Different probability distribution (e.g., probability distribution based on the *ranking* of individuals)
- Tournament Selection (iteratively pick two or more individuals and put in the mating pool the fittest)

Ex: real valued variables

- Solution: $x \in [a, b], a, b \in \mathbb{R}$
- Mutation: random perturbation $x \to x \pm \delta$, accepted if $x \pm \delta \in [a, b]$
- Crossover: linear combination $z = \lambda_1 x + \lambda_2 y$, with λ_1, λ_2 such that $a \le z \le b$.

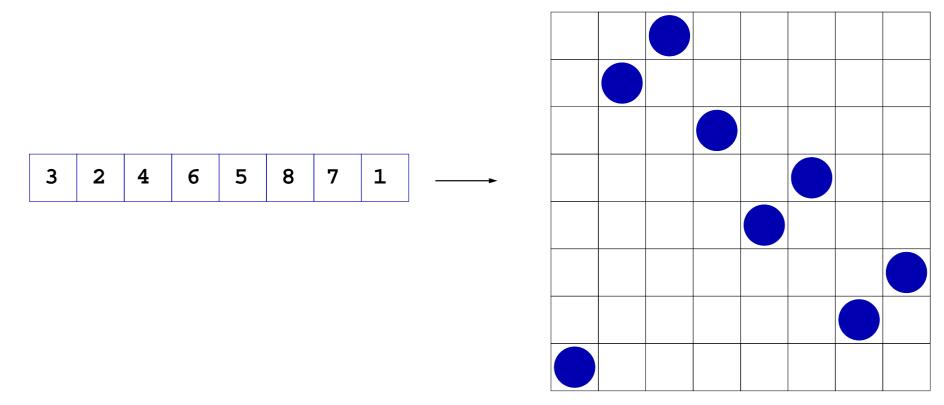
Example: permutations

- Solution: $x = (x_1, x_2, \dots, x_n)$ is a permutation of $(1, 2, \dots, n)$
- Mutation: random exchange of two elements in the *n*-ple
- Crossover: like 2-point crossover, but avoiding value repetition (see next example).

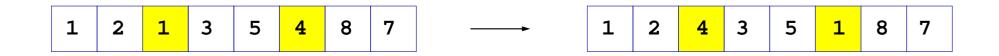


Place 8 queens on a 8×8 chessboard in such a way that the queens cannot attack each other.

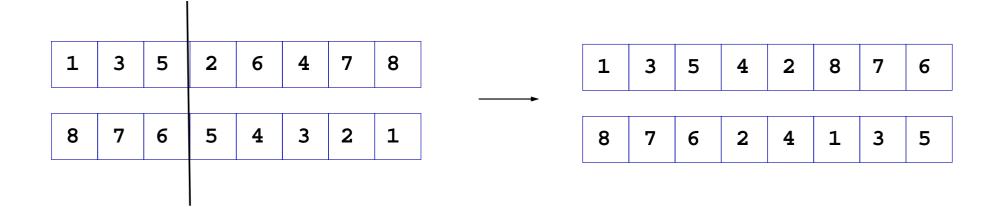
Genotype: a permutation of the numbers 1 through 8



Mutation: exchanging two numbers



Crossover: combining two parents



Fitness: penalty of a queen is the number of queens it can check.

The fitness of the configuration is the sum of the single penalties.

Example

Traveling Salesman Problem

Taken from:

http://ouray.cudenver.edu/~da0todd/neural/third_homework/
dave/test/TSP_Genetic_Algorithm.htm

Mondriaan Art

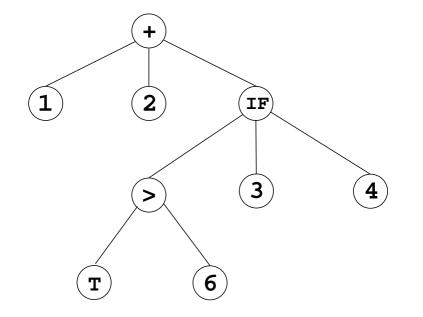
Taken from: http://www.evonet.polytechnique.fr/CIRCUS2/

Genetic Programming

- Can be seen as a 'variant' of GA: individuals are programs
- Used to build programs that solve the problem at hand (⇒ specialized programs)
- Extended to *automatic design* in general (e.g., controllers and electronic circuits)

Genetic Programming

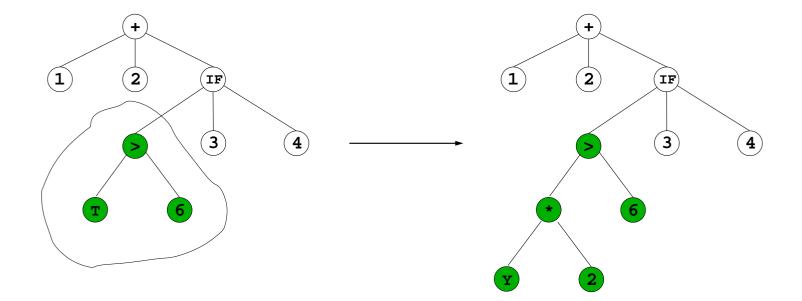
Individuals are *trees* which encode programs.



Fitness given by the evaluation of the program "behavior" (based upon some defined criteria)

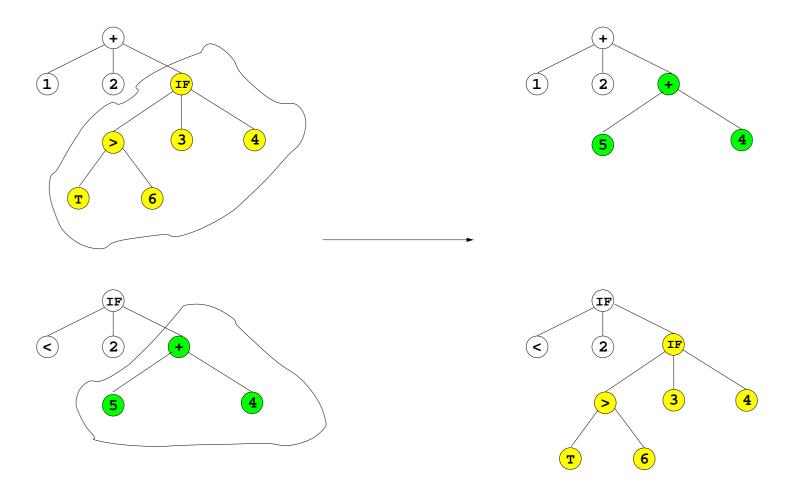
Operators

Mutation: Random selection of a subtree which is substituted by a *well formed* random generated subtree



Operators

Crossover: Exchange two randomly picked subtrees.



Operators

Selection and replacement

Fitness is evaluated depending on the application.

- For assembler worms the fitness can be the memory they occupied.
- For controllers, the fitness can be the percentage of correct actions

The realm of GP

- Black art problems. E.g., automated synthesis of analog electrical circuits, controllers, antennas, and other areas of design
- Programming the unprogrammable, involving the automatic creation of computer programs for unconventional computing devices. E.g.,cellular automata, parallel systems, multi-agent systems, etc.

Coevolution

Species evolve in the same environment

→ *dynamic* environment

Two kinds:

- Competitive
- Cooperative

Competitive Coevolution

Species evolve trying to face each other

E.g., prey/predator, herbivore/plants.

Applications: ALU design for Cray computer, (pseudo-)random number generator.

Cooperative Coevolution

Species evolve complementary capabilities to survive in their environment

E.g., host/parasite.

Applications: 'niche' genetic algorithms for *multi-criteria* optimization.

Some references

- M.Mitchell. Genetic Algorithms. MIT Press, 1999.
- Z.Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1992.
- D.E.Golberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.
- W.B.Langdon, R.Poli. Foundations of Genetic Programming. Springer, 2001.

On the Internet

- EvoNet: http://www.evonet.polytechnique.fr/
- www.genetic-programming.com
- GALib http://lancet.mit.edu/ga/
- http://www.aic.nrl.navy.mil/galist/
- www.isgec.org