
Evolutionary computation
Andrea Roli

andrea.roli@unibo.it

DEIS

Alma Mater Studiorum Università di Bologna

Evolutionary computation – p. 1

Evolutionary Computation

Evolutionary computation – p. 2

Evolutionary Computation

Inspiring principle: theory of natural selection

“Species face the problem of searching for beneficial
adaptations to the environment. The knowledge that each
species has gained is embodied in the makeup of the
chromosomes of its members.” (Davis, Genetic Algorithms
and Simulated Annealing, 1987)

Example: rabbits. . .

Evolutionary computation – p. 3

Evolutionary Computation

Evolutionary Computation (EC) encompasses:

Genetic Algorithms

Genetic Programming

Evolution Strategies

Estimation of Distribution Algorithms

Evolutionary computation – p. 4

Objectives

Problem solving

Optimization

Adaptive systems design

Simulation

Evolutionary computation – p. 5

Some applications

⊲ System design (e.g., airplanes, electronic circuits,
mechanical elements)

⊲ Neural network training (e.g., robotics)

⊲ Signal processing (e.g., artificial vision)

⊲ Optimization (discrete and continuous)

Evolutionary computation – p. 6

More applications

⊲ Time series analysis and forecasting (e.g., financial
forecasting)

⊲ Artificial Life (e.g., cellular automata, analysis of
complex adaptive systems)

⊲ Games (e.g., Prisoner’s Dilemma)

Challenge: find a problem where EC has NOT been
applied!

Evolutionary computation – p. 7

Genetic Algorithms

The Metaphor

NATURAL EVOLUTION ARTIFICIAL SYSTEMS
Individual ↔ A possible solution
Fitness ↔ Quality

Environment ↔ Problem

Evolutionary computation – p. 8

A bit of terminology

A population is the set of individuals (solutions)

Individuals are also called genotypes or
chromosomes (if one solution↔ one chromosome)

Chromosomes are made of units called genes

The domain of values of a gene is composed of alleles
(e.g., a binary variable/gene has two alleles)

Evolutionary computation – p. 9

The Evolutionary Cycle

POPULATION

PARENTS
SELECTION

RECOMBINATION

MUTATION

OFFSPRING
REPLACEMENT

Evolutionary computation – p. 10

Genetic operators

Mutation

Recombination

Selection

Replacement/insertion

Evolutionary computation – p. 11

Genetic operators

⊲ EC algorithms define a basic computational procedure
which uses the genetic operators.

⊲ The definition of the genetic operators specifies the actual
algorithm.

⊲ The definition of the genetic operators depends upon the
problem at hand.

Evolutionary computation – p. 12

Genetic Algorithms

Developed by John Holland (early ’70) with the aim of:

Understand adaptive processes of natural systems

Design robust (software) artificial systems

Evolutionary computation – p. 13

Simple Genetic Algorithm

Derived from the natural metaphor

Very simple model

‘Programming oriented’

You can take it as a first step toward evolutionary algorithms
in general

Evolutionary computation – p. 14

Simple Genetic Algorithm

Solutions are coded as bit strings

0 0 0 1 01 1 1 1 1

CHROMOSOME

GENE

Integer

Plan

Real

Rules

.....

GENOTYPE PHENOTYPE

Evolutionary computation – p. 15

Example

Optimization of a function of integer variable x ∈ [0, 100]:

binary coding→ string of 7 bit

4 bits per digit→ string of 12 bit

Evolutionary computation – p. 16

Genetic operators (1)

Mutation: each gene has probability pM of being modified
(’flipped’)

0 0 0 1 01 1 0 1 1

0 0 0 1 01 1 1 1 1

Evolutionary computation – p. 17

Genetic operators (2)

Crossover: cross-combination of two chromosomes
(loosely resembling human crossover)

1 1 0 01 0 0 0 1 0 1 1 0 01 0

0 1 1 1

0 1 1 1

0 0 1 00 0 0 11 10 0 0 11 1

Evolutionary computation – p. 18

Genetic operators (3)

Selection acts in the choice of parents and produces the
mating pool.

→ Proportional selection: the probability for an individual
to be chosen is proportional to its fitness.

Evolutionary computation – p. 19

Genetic operators (3)

Roulette wheel

50%
10%

10%

25%

5%

I1 50
I2 25
I3 10
I4 10
I5 5

Evolutionary computation – p. 20

Genetic operators (4)

Generational replacement: The new generation replaces
entirely the old one.

Advantage: very simple, computationally not
(extremely) expensive, easier theoretical analysis.

Disadvantage: we could loose good solutions

Evolutionary computation – p. 21

High-level algorithm

Initialize Population
Evaluate Population
while Termination conditions not met do

while New population not completed do
Select two parents for mating
Apply crossover
Apply mutation to each new individual

end while
Population← New population
Evaluate Population

end while

Evolutionary computation – p. 22

Termination conditions

The basic question is: when to stop?

Execution time limit reached

We are satisfied with the solution(s) obtained

Stagnation (limit: the population converged to the same
individual)

Evolutionary computation – p. 23

Simple Genetic Algorithm

Initialize Population{Npop individuals X1, . . . ,XNpop
}

for i = 1 to Npop do
Xi ← InitialSolution() {e.g., random}

end for

Evaluate Population{Individual Xi has fitness Fi}

for i = 1 to Npop do
Fi ← Eval(Xi)

end for

Evolutionary computation – p. 24

Simple Genetic Algorithm

Select parents: G1, G2{Roulette wheel selection}

lung ← 0

for i = 1 to Npop do {all fitness values are summed up}

lung ← lung + Fi

end for
for m = 1 to 2 do

r ← Random(0,lung); sum← 0; i← 1

while i < Npop AND sum < r do
sum← sum + Fi; i← i + 1

end while
Gm ← Xi

end for

Evolutionary computation – p. 25

Simple Genetic Algorithm

Apply crossover: from G1, G2 we get G′

1
, G′

2

r ← Random(1,lchromosome){crossover point}

for i = 1 to r − 1 do
G′

1
[i]← G1[i]

G′

2
[i]← G2[i]

end for
for i = r to lchromosome do

G′

1
[i]← G2[i]

G′

2
[i]← G1[i]

end for

Evolutionary computation – p. 26

Simple Genetic Algorithm

Apply mutation to individual X

for i = 1 to lchromosome do
r ← Random(0,1)

if r ≤ pM then
Complement X[i]

end if
end for

Evolutionary computation – p. 27

SGA: Example

Maximization of a real function

Taken from: http://www.evonet.polytechnique.fr/CIRCUS2/

Evolutionary computation – p. 28

Fitness Landscape

Representation of the space of all possible genotypes,
along with their fitness.

Evolutionary computation – p. 29

Fitness Landscape

Caution!

Different landscapes for different operators

In many cases fitness landscapes are dynamic

Landscape ‘intuition’ might be misleading

Use of term local optimum used and abused
everywhere

Evolutionary computation – p. 30

Why does it work?

Intuition:

Crossover combines good parts from good solutions
(but it might also destroy. . . sometimes)

Mutation introduces diversity

Selection drives the population toward high fitness

Evolutionary computation – p. 31

SGA: pros and cons

Pros:

Extremely simple

General purpose

Theoretical models

Cons:

Coding

Too simple genetic operators

Evolutionary computation – p. 32

A recipe

The ingredients to prepare a GA:

Solution coding (e.g., bit strings, programs, arrays of real
variables, etc.)

Define a way of evaluating solutions (e.g., objective
function value, result of a program, behavior of a system,
etc.)

Define recombination operators (crossover , mutation)

Define the selection and replacement/insertion
mechanisms

Evolutionary computation – p. 33

Toward less simple GA

Recombination:

Multi-point crossover (recombination of more than 2
“pieces” of chromosomes)

Multi-parent crossover (an individual is generated by
more than 2 parents)

Uniform crossover (children created by randomly
shuffling the parent variables at each site)

Evolutionary computation – p. 34

Multi-point crossover

111

1 0 0 0 1 0

0 1 1 1

0 0 1 01 0 0 0 0 11 1

0 0 01 1

1 1 0 01 0

Evolutionary computation – p. 35

Multi-parent crossover

1 1 0 0

0 1 1 0

0 0 1 0

0 1 1 1

1

00 1

1 1

0 1

0 0 0

1

0 0

1 0

1 0 1 01 0

1 1 0

0 1 1

0 1 1

1 1 01 0

11

1 1 0 1 1 0

Evolutionary computation – p. 36

Toward less simple GA

Mutation:

Learning applied to modify the chromosome

In optimization, hill-climbing or more complex local
search algorithms can be applied

Interesting topic: Evolution & Learning,

www.cogs.susx.ac.uk/users/ezequiel/alife-page/evolearn.html

Evolutionary computation – p. 37

Toward less simple GA

Selection:

Different probability distribution (e.g., probability
distribution based on the ranking of individuals)

Tournament Selection (iteratively pick two or more
individuals and put in the mating pool the fittest)

Evolutionary computation – p. 38

Ex: real valued variables

- Solution: x ∈ [a, b], a, b ∈ R

- Mutation: random perturbation x→ x± δ, accepted if
x± δ ∈ [a, b]

- Crossover: linear combination z = λ1x + λ2y, with λ1, λ2

such that a ≤ z ≤ b.

Evolutionary computation – p. 39

Example: permutations

- Solution: x = (x1, x2, . . . , xn) is a permutation of
(1, 2, . . . , n)

- Mutation: random exchange of two elements in the
n-ple

- Crossover: like 2-point crossover, but avoiding value
repetition (see next example).

Evolutionary computation – p. 40

Eight Queens

Place 8 queens on a 8× 8 chessboard in such a way that
the queens cannot attack each other.

Evolutionary computation – p. 41

Eight Queens

Genotype: a permutation of the numbers 1 through 8

7 13 2 4 6 5 8

Evolutionary computation – p. 42

Eight Queens

Mutation: exchanging two numbers

21 11 3 5 4 8 7 2 3 5 8 74 1

Evolutionary computation – p. 43

Eight Queens

Crossover: combining two parents

7

1

8 7

5

6

8 7 6 5 4 3 2

3 5 2 6 41

8 7 6 2 4 1 3

3 5 4 2 81

Evolutionary computation – p. 44

Eight Queens

Fitness: penalty of a queen is the number of queens it can
check.

The fitness of the configuration is the sum of the single
penalties.

Evolutionary computation – p. 45

Example

Traveling Salesman Problem

Taken from:
http://ouray.cudenver.edu/∼da0todd/neural/third_homework/

dave/test/TSP_Genetic_Algorithm.htm

Evolutionary computation – p. 46

Mondriaan Art

Mondriaan Art

Taken from: http://www.evonet.polytechnique.fr/CIRCUS2/

Evolutionary computation – p. 47

Genetic Programming

Can be seen as a ‘variant’ of GA: individuals are
programs

Used to build programs that solve the problem at hand
(⇒ specialized programs)

Extended to automatic design in general (e.g.,
controllers and electronic circuits)

Evolutionary computation – p. 48

Genetic Programming

Individuals are trees which encode programs.

>

1

+

2 IF

3 4

T 6

Fitness given by the evaluation of the program “behavior”
(based upon some defined criteria)

Evolutionary computation – p. 49

Operators

Mutation: Random selection of a subtree which is
substituted by a well formed random generated subtree

>

1

+

2 IF

3 4

6T

>

6*

1

+

2 IF

3 4

2Y

Evolutionary computation – p. 50

Operators

Crossover: Exchange two randomly picked subtrees.

4

+

4

+

5

5>

+

2 IF

3 4

T 6

>

IF

3 4

T 6

IF

<

1

+

2

2

IF

<

1

2

Evolutionary computation – p. 51

Operators

Selection and replacement

Fitness is evaluated depending on the application.

For assembler worms the fitness can be the memory
they occupied.

For controllers, the fitness can be the percentage of
correct actions

Evolutionary computation – p. 52

The realm of GP

Black art problems. E.g.,automated synthesis of analog
electrical circuits, controllers, antennas, and other areas
of design

Programming the unprogrammable, involving the
automatic creation of computer programs for
unconventional computing devices. E.g.,cellular
automata, parallel systems, multi-agent systems, etc.

Evolutionary computation – p. 53

Coevolution

Species evolve in the same environment

→ dynamic environment

Two kinds:

Competitive

Cooperative

Evolutionary computation – p. 54

Competitive Coevolution

⊲ Species evolve trying to face each other

E.g., prey/predator, herbivore/plants.

Applications: ALU design for Cray computer,
(pseudo-)random number generator.

Evolutionary computation – p. 55

Cooperative Coevolution

⊲ Species evolve complementary capabilities to survive in
their environment

E.g., host/parasite.

Applications: ‘niche’ genetic algorithms for multi-criteria
optimization.

Evolutionary computation – p. 56

Some references

M.Mitchell. Genetic Algorithms. MIT Press, 1999.

Z.Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs, Springer, 1992.

D.E.Golberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
1989.

W.B.Langdon, R.Poli. Foundations of Genetic
Programming. Springer, 2001.

Evolutionary computation – p. 57

On the Internet

EvoNet: http://www.evonet.polytechnique.fr/

www.genetic-programming.com

GALib http://lancet.mit.edu/ga/

http://www.aic.nrl.navy.mil/galist/

www.isgec.org

Evolutionary computation – p. 58

	Evolutionary Computation
	Evolutionary Computation
	Evolutionary Computation
	Objectives
	Some applications
	More applications
	Genetic Algorithms
	A bit of terminology
	The Evolutionary Cycle
	Genetic operators
	Genetic operators
	Genetic Algorithms
	Simple Genetic Algorithm
	Simple Genetic Algorithm
	Example
	Genetic operators (1)
	Genetic operators (2)
	Genetic operators (3)
	Genetic operators (3)
	Genetic operators (4)
	High-level algorithm
	Termination conditions
	Simple Genetic Algorithm
	Simple Genetic Algorithm
	Simple Genetic Algorithm
	Simple Genetic Algorithm
	SGA: Example
	Fitness Landscape
	Fitness Landscape
	Why does it work?
	SGA: pros and cons
	A recipe
	Toward {	extit {less simple}} GA
	Multi-point crossover
	Multi-parent crossover
	Toward {	extit {less simple}} GA
	Toward {	extit {less simple}} GA
	Ex: real valued variables
	Example: permutations
	Eight Queens
	Eight Queens
	Eight Queens
	Eight Queens
	Eight Queens
	Example
	Mondriaan Art
	Genetic Programming
	Genetic Programming
	Operators
	Operators
	Operators
	The realm of GP
	Coevolution
	Competitive Coevolution
	Cooperative Coevolution
	Some references
	On the Internet

