
Planning as Satis�abilityHenry Kautz and Bart SelmanAI Principles Research DepartmentAT&T Bell Laboratories600 Mountain Avenue, Room 2C-407Murray Hill, NJ 07974fkautz, selmang@research.att.comAbstractWe develop a formal model of planning based on satis�ability ratherthan deduction. The satis�ability approach not only provides a more 
ex-ible framework for stating di�erent kinds of constraints on plans, but alsomore accurately re
ects the theory behind modern constraint-based plan-ning systems. Finally, we consider the computational characteristics of theresulting formulas, by solving them with two very di�erent satis�abilitytesting procedures.1 IntroductionPlanning has traditionally been formalized as deduction [Green, 1969; McCarthyand Hayes, 1986; Rosenschein, 1981; Pednault, 1988; Allen, 1991]. Although thedetails of the di�erent formalisms vary, all use axioms which state that the e�ectsof an action are implied by the occurrence of the action when its preconditionshold. Planning is then formalized as the process of �nding a deductive proof ofa statement that asserts that the initial conditions together with a sequence ofactions imply the goal conditions.The complementary problem to deducibility is satis�ability | that is, �ndinga model of a set of axioms. While deduction is a very hard problem, it has longbeen supposed in AI that satis�ability is even harder. In the �rst-order case,theoremhood is at least semi-decidable, but there can be no complete procedurefor �nding models of arbitrary formulas. In the propositional case, however, thereThis paper appears in the Proceedings of the 10th European Conference on Arti�cial Intel-ligence (ECAI 92), Vienna, Austria, August 1992.1



appears to be no theoretical basis for supposing that the one problem is harderthan the other. incomparable. Nevertheless, it appears that no one has triedto explicitly formulate planning as propositional satis�ability. It may have beenthat the task of searching the exponentially large space of truth assignments fora model seemed far more daunting than searching the space of resolution proofs(although the latter could be equally large, since blocks world planning is NP-hard[Gupta and Nau, 1991] regardless of the formalization).Recently, we have been developing algorithms that solve extremely large anddi�cult satis�ability problems expressed as sets of propositional clauses. As re-ported in [Selman et al., 1992], we have used a randomized greedy algorithmGSAT to solve empirically hard random formulas as well as encodings of hardgraph-coloring problems. This impressive performance led us to try to formulateother problems in AI as propositional satis�ability, both in order to test our algo-rithms on di�erent kinds of formulas, and to potentially uncover a new practicalapproach to solving those problems. Although this was our primary motivationfor investigating planning as satis�ability, we believe that the resulting frame-work is actually a more 
exible and accurate way of formalizing planning thanthe standard deductive approach.The �rst part of this paper deals with the formalism. We will demonstratethat the axiomatizations of actions used for deductive planning are not adequatefor the satis�ability approach, because they admit many unintended models. Wethen present an alternative approach for axiomatizing actions using the blocksworld as an example, and show how a technique for replacing predicates that takethree or more arguments by predicates that take no more than two arguments candramatically cut the size of the corresponding instantiated propositional theory.The formalization of planning as satis�ability turns out to have a number ofattractive properties: It is easy to state arbitrary facts about any state of theworld, not just the initial and goal states. It is likewise easy to state arbitraryconstraints on the plan | for example, that it contain a speci�ed action performedat a speci�ed time. Finally, the approach provides a more accurate formal modelof modern constraint-based planners [Ste�k, 1981; Chapman, 1987].The second part of the paper reports on our preliminary experiments in solvingthe Boolean satis�ability problems generated by speci�c blocks world planningproblems. We tried two algorithms: the GSAT program mentioned above, andDP, an implementation of the standard Davis-Putnam backtracking algorithm[Davis and Putnam, 1960]. The backtracking algorithm did surprisingly well onmost of the planning problems, despite that fact that it failed to solve similarly-sized coloring and random problems. The results with GSAT were the reverse| the planning formulas appeared harder than the coloring and hard randomproblems. 2



A signi�cant �nding of the experimental work is that the performance of GSATis signi�cantly improved by the addition of axioms which are not logically nec-essary, but which explicitly rule out the existence of certain \impossible" states(such as block being on itself). This is an interesting case where a larger problemcan be much easier to solve than a smaller one.2 Planning as DeductionThe best-known logical formalization of planning is the situation calculus [Mc-Carthy and Hayes, 1986]. In this system, the execution of an action is explicitlyrepresented by the application of a function to a term representing the state inwhich the action is performed. For example, to express the fact that block A ison B after performing move(A;B) in state S0, one might writeon(A;B; result(move(A;B); S0)))A disadvantage of the situation calculus for our purposes is that it is inherently�rst-order: an in�nite number of state terms can be constructed by repeatedapplication of the result function. On the other hand, we are interested only in�nite plans containing no more than some given number of actions. The followingapproach is equivalent to a �nite propositional system.The basic language is function and quanti�er-free typed predicate logic withequality. Each of the �nite set of types contains a �nite set of individuals, namedby unique constant terms. In this paper we will only use two types, BLOCK andTIME. We will use A, B, C, � � � for constants of type BLOCK. The constants oftype TIME are always a �nite range of integers.A �nite set (or conjunction) of formulas may be abbreviated by a schema. Aschema looks just like a formula, but may also contain typed variables bound tothe quanti�ers 9 or 8. A schema stands for the set of all of the formulas thatcan be generated by iterating the quanti�ers over the constants of the appropriatetypes. We will use the letters i and j for variables of type TIME, and other lettersfor variables for type BLOCK. Arithmetic expressions like \i+1" are interpretedat instantiation time| the basic language does not actually contain any functionsymbols such as \+". Finally, we make the convention that we simply disregardany instantiation of a schema which would contain a time greater than N , thelargest constant of type TIME.In the blocks world we will use the predicates on(x; y; i) to mean that x is on yat time i; clear(x; i) to mean there is room to move something on top of x at timei; and move(x; y; z; i) to mean that x is moved from y to z between times i andi+1. Note that actions are represented by propositions, not terms or functions. It3



is straightforward to write down the usual kinds of axioms which state that if thepreconditions of an action hold then the action achieves its e�ects. For example:8x; y; z; i: on(x; y; i) ^ clear(x; i)^ clear(z; i)^move(x; y; z; i)� on(x; z; i+ 1) ^ clear(y; i+ 1)We also include frame axioms to describe the propositions an action doesnot a�ect. A total of 11 such schemas can capture a simple blocks world. Wealso introduce a special block named Table which is never moved but which cansupport any number of blocks (i.e., it is always \clear").In the traditional deductive approach, a planning problem is formalized asa theorem which states that the initial conditions together with a sequence ofactions implies the goal conditions. For example, suppose in the initial conditionA is on B, and we wish to �nd a two step plan such that B will be on A. Theproblem is represented by the existentially-quanti�ed schema:9x1; y1; z1; x2; y2; z2:on(A;B; 1) ^ on(B;Table; 1)^ clear(A; 1)^move(x1; y1; z1; 1) ^move(x2; y2; z2; 2) �on(B;A; 3)A proof of such a schema is taken to be a proof of a particular instantiationof the schema; the plan then corresponds to the instantiation of the two instancesof the move predicate.3 Anomalous ModelsThe axioms sketched above (or the equivalent in the situation calculus) are all truein the (idealized) blocks world. But it is not the case that all worlds described bythese axioms are anything like the blocks world! Or, in other words, it is safe touse them deductively: whatever follows from them is true. But it is not correct tosay that any plan which satis�es, or is consistent with, these axioms is reasonable.A model is a truth-assignment to the atomic propositions of the language, andcan be identi�ed with the set of propositions it assigns \true". Consider the twostep planning problem described above. The theorem is true in all models of theaxioms. But there are many models of the axioms which satisfy the theorem butdo not correspond to valid plans. For example, the axioms allow the model8><>: on(A;B; 1); on(B;Table; 1); clear(A;1);on(B;A; 2); on(B;A; 3); clear(Table;1);clear(Table;2); clear(Table;3) 9>=>;4



where the world changes, yet no known action occurs. (For brevity, we henceforthomit the propositions clear(Table; i) from the description of models.)Furthermore, the axioms only state what happens when an action is performedwhen its preconditions are satis�ed. Thus( on(A;B; 1); on(B;Table; 1); clear(A;1);move(B;Table;A; 1); on(B;A;2); on(B;A; 3) )is also a model: because the preconditions of move(B;Table;A;1) are false, it isconsistent that the e�ect on(B;A; 2) still occurs!These kind of anomalous models are not unique to the particular language wechoose. They occur in the axioms developed for the situation calculus, or anyother system designed for deductive planning.4 Planning as Satis�abilityIn the planning as satis�ability approach, a planning problem is not a theorem tobe proved; rather, it is simply a set of axioms with the property that any model ofthe axioms corresponds to a valid plan. Some of these axioms describe the initialand goal states. For the simple example discussed above, this ison(A;B; 1) ^ on(B;Table; 1)^ clear(A; 1) ^ on(B;A; 3)The other axioms describe the actions in general. These include the standarde�ect and frame axioms described above, plus others that rule out the anomalousmodels.First, we rule out the possibility that an action executes despite the fact thatits preconditions are false. This can be done by asserting that an action impliesits preconditions as well as its e�ects; e.g.,8x; y; z; i: move(x; y; z; i)� (clear(x; i)^clear(z; i)^ on(x; y; i))It is interesting to note that in this formulation preconditions and e�ects aretreated symmetrically.Next, we state that only one action occurs at a time.8x; x0; y; y0; z; z0; i: (x 6= x0 _ y 6= y0 _ z 6= z0) �:move(x; y; z; i)_ :move(x0; y0; z0; i)Finally, we assert that some action occurs at every time. This is not a signi�-cant restriction, since we can always introduce an explicit \do nothing" action ifdesired. In the simple blocks world the axiom schema is8i < N: 9x; y; z: move(x; y; z; i)5



(An existentially-quanti�ed formula expands to the disjunction of its instantia-tions.) If a planning problem is speci�ed by asserting a complete initial state thenthese axioms guarantee that all models correspond to valid plans. This is so be-cause every model contains a sequence of actions whose preconditions are satis�ed,and the execution of an action in a state completely determines the truth-valuesof all propositions in the next state.The only model of the simple two step planning problem is the intended modelcontaining move(A;B; Table; 1) and move(B;Table;A;2). A simple planning sys-tem can be constructed by linking a routine that instantiates such a given set ofaxiom schemas and initial and goal state speci�cations to a Boolean satis�abilityalgorithm.5 Advantages of the FrameworkThe formulation of planning as satis�ability turns out to have a number of advan-tages over the purely deductive approach. First, it is easy to specify conditions inany intermediate state of the world, not just the initial and goal states. For exam-ple, if you want to insure that something is on either block C or D at time 5, yousimply add the assertion to the problem speci�cation :clear(C; 5)_:clear(D; 5).Such conditions can involve arbitrary quanti�ers and disjunction, as can the state-ments in the goal description. The conditions can also include events in a changingworld that are beyond the control of the agent.It is di�cult to assert such conditions in the deductive approach. In thesituation calculus it appears necessary to resort to syntactic, non-logical con-straints on the form of the compound term which names the goal state. Evenso, there remain conditions that cannot be guaranteed using only the deductiveplanning axioms. For example, suppose you want the plan to not contain the ac-tion move(A;B;C; 3). It is not correct to conjoin the formula :move(A;B;C; 3)to the antecedent of the theorem, because then a proof of the theorem becomestrivial: instantiate the plan so it does contain that action, and then \false" im-plies anything. On the other hand, it may be impossible to prove the theorem if:move(A;B;C; 3) is added to the consequence, because the basic axioms cannotin general be used to prove that an action does not occur.In the satis�ability framework the plan requirements are all constraints onthe models. This view turns out to tie in with the notion of planning with con-straints [Ste�k, 1981; Chapman, 1987], widely used in modern planning systems.Chapman describes the functioning of his planning system TWEAK by using aformula in temporal logic called the \modal truth criteria", which roughly canbe interpreted as saying that a proposition p holds in a state if and only if it isasserted (added by an action) in that or an earlier state, and not falsi�ed by an6



problem using move using object, source, dest# props # clauses size # props # clauses sizeanomaly 127 2,364 5,529 94 375 933reversal 429 22,418 51,753 215 993 2,533medium 641 68,533 155,729 244 1,185 3,025hanoi 1,005 63,049 137,106 288 1,554 3,798huge >7,000 >3,500,000 > 8,000,000 996 5,945 15,521Table 1: Comparison of size of propositional theories using one ternary predicateversus three binary predicates.intermediate action. He goes on to say that the \truth criteria can usefully bethought of as a completeness/soundness theorem for a version of the situationcalculus," but does not specify the exact relationship. The logical status of themodal truth criteria is made clear by the planning as satis�ability approach: itis one way of expressing the axioms that must be added to the situation calculusso that all models of the axioms correspond to valid plans. The criteria rules outanomalous models in which propositions become true but are not added by anaction whose preconditions are satis�ed.6 Experimental ResultsIn the rest of this paper we shall talk about issues that arise when solving plan-ning problems using general satis�ability procedures. In all the work describedhenceforth, instantiated planning problems were represented as sets (that is, con-junctions) of propositional clauses (disjunctions of literals).One of the �rst issues that arises in solving the Boolean satis�ability problemsgenerated by planning is their sheer size. Taking c to be the number of elements(constants) in the largest type, d to be the maximum depth of quanti�er nestingin any schema, and k to be the number of literals in the longest schema, thetotal length of the instantiated theory is bounded by O(kcd). It is clear that thegreatest reduction in size can be had by reducing the quanti�er depth. A simplescheme for so doing also greatly reduces the number of propositions.The basic idea is to replace predicates that take three or more arguments byseveral predicates that take no more than two arguments. The move(x; y; z; i)predicate takes four arguments, so we will replace it with three new predicates:object(x; i), source(y; i), and dest(z; i).Consider the axiom in section 4 that states that only a single action occurs ata time. It has seven universally quanti�ed variables, but can be replaced by the7



following three schemas, each with only three quanti�ers:8i; x1; x2:x1 6= x2 � :object(x1; i) _ :object(x2; i)8i; y1; y2:y1 6= y2 � :source(y1; i) _ :source(y2; i)8i; z1; z2:z1 6= z2 � :dest(z1; i) _ :dest(z2; i)Table 1 shows the dramatic reduction in size made possible by the shift to 2-placepredicates.The most widely-used algorithm for solving satis�ability problems is the Davis-Putnam procedure [Davis and Putnam, 1960], which is in essence a resolutionmethod [Vellino, 1989]. This algorithm incrementally builds up a truth assignmentand backtracks when it determines the assignment does not satisfy the formula.It also simpli�es the clauses as it goes along by deleting literals which are falsein the current partial assignment, and when a clause containing a single literal iscreated, immediately assigns that literal true (or backtracks if necessary).Recently we developed a new approach to solving large satis�ability problemscalled GSAT, a randomized local search procedure. The algorithm works by guess-ing a complete random truth-assignment. It then repeatedly changes the value(\
ips") assigned to the proposition that results in the largest number of clausesbeing satis�ed. If several propositions are equally good, it picks one at random.It continues to 
ip until either a satisfying model is found or a predeterminednumber of 
ips are performed. If a satisfying model is not found, GSAT repeatsthe procedure, starting with a di�erent random assignment.In [Selman et al., 1992], we report on the details of GSAT, and show that itcan solve non-trivial satis�ability problems that are an order of magnitude largerthan can be solved by DP. These problems were generated from graph-coloringproblems that were known to be hard [Johnson et al., 1991], and random problemsfrom a \hard" random distribution [Mitchell et al., 1992]. A few of the resultscomparing the speed of the two algorithms appear in Table 2, along with some ofthe tests we ran on the planning formulas. A dash | in the table indicates thatthe algorithm failed to �nd a solution after running overnight.DP performed well on moderately large planning formulas: compare its timeof 1.2 seconds on the \medium" planning problem, versus its time on 4.7 hourson the much smaller \random B" problem. On the largest planning formulasDP failed as expected. GSAT did not fair as well, but its performance can beimproved, as we shall see.One of the ways in which a model can fail to satisfy all the axioms of a planningproblem is if it depends on an \impossible" state of the world | for example, onein which a block is on itself. It is not logically necessary to rule out such states,since the axioms for actions are such that they can never lead from a legal state8



problem vars size GSAT DPrandom A 100 1,290 6 sec 2.8 minrandom B 140 1,806 14 sec 4.7 hoursrandom C 500 6,450 1.6 hours |coloring A 2,125 168,419 8 hours |coloring B 2,250 180,576 5 hours |anomaly 94 933 26 sec 0.1 secreversal 215 2,533 | 4 secmedium 244 3,025 | 1.2 sechanoi 288 3,798 | 13 hourshuge 996 15,521 | |Table 2: Comparison of speed of GSAT versus DP on solving sample coloring,random, and planning satis�ability problems.problem original expandedsize time size timeanomaly 933 26 sec 1,325 1.9 secreversal 2,533 | 3,889 1.2 minmedium 3,025 | 5,235 1.2 minTable 3: Improvement in performance of GSAT by adding additional axioms torule out impossible states.to an impossible state. None the less, we decided to try adding axioms whichexplicitly rule out various impossible conditions.Expanding the problems in this way signi�cantly improved the performance ofGSAT, as shown in Table 3. (Note: see also the paper \Domain-IndependentExtensions to GSAT: Solving Large Structured Satis�ability Problems",by Bart Selman and Henry Kautz, for more recent extensions to GSATthat greatly improve its performance on these formulas.) GSAT onlyrequires a small fraction of the time it previously required to solve the Sussmananomaly, and can now solve the next two bigger problems. Interestingly, theperformance of DP was not improved by the additional constraints.It appears that the larger number of constraints in the expanded problemhelped guide GSAT toward the global solution. It is important to note, however,that the additional constraints do not give any new information to the problem9



solver; they can all be derived from the original set of constraints. This suggestsan interesting line of future research: given a initial set of logical constraints,determine how to derive additional constraints that help guide a greedy localsearch type problem solver.The relatively good performance of DP on moderately-sized planning problemscan be at least partly explained by the fact that the planning formulas consistof 99% Horn clauses. (A Horn clause contains at most one positive literal.) DPperforms unit resolution, which propagates very e�ciently | in linear time, inthe best implementation | through Horn clauses. Our current version of GSAThas no special mechanism for handling Horn clauses e�ciently.Minton et al. [Minton et al., 1990] claim very good results for using a greedylocal search method for a large scheduling problem involving the Hubble SpaceTelescope. This raises the possibility that the computational nature of real-worldscheduling tasks is fundamentally di�erent from the kind of blocks world \puzzles"traditionally studied in AI (see also [Agre and Horswill, 1992] for a discussion ofthis claim). This issue is the focus of our current research.7 ConclusionsWe have developed a formal model of planning based on satis�ability rather thandeduction. We showed how deductive planning axioms must be strengthenedin order to rule out anomalous models. We then went on to argue that thesatis�ability approach not only provides a more 
exible framework for statingdi�erent kinds of constraints on plans than does the deductive approach, but alsomore accurately re
ects the theory behind constraint-based planning systems.We showed that the kinds of satis�ability problems that come from planninghave di�erent computational characteristics than the random formulas and col-oring problems typically used to test satis�ability algorithms. Finally, we sawthat enlarging the problems by adding more axioms can dramatically improve theperformance of satis�ability algorithms based on greedy local search.References[Agre and Horswill, 1992] Philip E. Agre and Ian Horswill. Cultural support forimproivisation. In Proceedings of AAAI-92, Menlo Park, CA, 1992. AAAIPress/The MIT Press.[Allen, 1991] James Allen. Planning as temporal reasoning. In Proceedings of theSecond International Conference on Principles of Knowledge Representationand Reasoning (KR-89), Cambridge, MA, 1991.10
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