
 Bayesian Networks
Learning

Fabrizio Riguzzi
Engineering Department

2

Summary

● Probability theory
● Conditional independence
● Definition of Bayesian network
● Inference
● Learning
● Logic and probability

3

Uncertainty

● Reasoning requires simplifications:
– Birds fly

– Smoke suggests fire

● Treatment of exceptions
● How to reason from uncertain knowledge?

4

How to Perform Inference?

● Use non-numerical techniques
– Logicist: non monotonic logic

● Assign to each proposition a numerical measure of
uncertainty
– Neo-probabilist: use probability theory

– Neo-calculist: use other theories:
● fuzzy logic
● certainty factors
● Dempster-Shafer

5

Probability Theory

● A: Proposition,
– Ex: A=The coin will land heads

● P(A): probability of A
● Frequentist approach: probability as relative

frequency
– Repeated random experiments

– P(A) is the fraction of experiments in which A is true

● Bayesian approach: probability as a degree of belief
● Example: B=burglary tonight

6

Axioms of Probability Theory

0≤PA≤1

PSure Proposition=1

PA∨B=PAPB
if AandBare mutually exclusive

7

Probability Rules

● Any event A can be written as the or of two disjoint
events (A and B) and (A and ¬B)

● Where P(A,B)=P(A∧B) is called the joint
probability of A and B

● In general, if B
i
 i=1,2,...,n is a set of exhaustive and

mutually exclusive propositions

● Moreover

PA=PA , BPA ,¬B

PA=∑i
PA , Bi

PAP¬A=1

marginalization/
sum rule

8

Conditional Probabilities

● P(A|B)= belief of A given that I know B
● Relation to P(A,B)

PA , B=PA∣BPB

PA∣B=
PA , B

PB

product rule

9

Bayes Theorem

● Relationship between P(A|B) and P(B|A)

● P(A): prior probability
● P(A|B): posterior probability (after learning B)

PA∣B=
PB∣APA

PB

10

Conditional Independence

● If P(A|B)=P(A) we say that A and B are independent
● If P(A|B,C)=P(A|C) we say that A and B are

conditionally independent given C

11

Chain Rule

● n events E
1
,...,E

n

● Joint event (E
1
,...,E

n
)

● Chain rule:

PE1, , En=PEn∣En�1 , E1PEn�1 , , E1

PE1, , En�1=PEn�1∣En�2 , E1PEn�2 , , E1

⋯

PE1, , En=PEn∣En�1 , E1PE2∣E1PE1=

∏i=1

n

PEi∣Ei�1 ,E1 12

Multivalued Hypothesis

● Propositions can be seen as binary variables, i.e.
variables taking values true or false
– Burglary B: true or false

● Generalization: multivalued variables
– Semaphore S, values: green, yellow, red

– Propositions are a special case with two values

13

Discrete Random Variables

● Variable V, values v
i
 i=1,...,n

● V is also called a discrete random variable

● V=v
i
 is a proposition

● Propositions V=v
i
 i=1,...,n exhaustive and mutually

exclusive

● P(v
i
) stands for P(V=v

i
)

● V is described by the set {P(v
i
)|i=1,...,n}, the

probability distribution of V, indicated with P(V)
14

Notation

● We indicate with v a generic value of V
● Set or vector of variables: V,values v

15

Marginalization

● Multivalued variables A and B

● b
ii
 i=1,...,n values of B

● Or

● In general

Pa=∑i
Pa ,bi Pa=∑i
Pa ,bi 

Pa=∑b
Pa ,b

Px =∑y
Px , y sum rule

16

Conditional Probabilities

● P(a|b)= belief of A=a given that know B=b
● Relation to P(a,b)

● Bayes theorem

Pa ,b=Pa∣bPb

Pa∣b=
Pa ,b
Pb

Pa∣b=
Pb∣a pa

Pb

product rule

17

Continuous Random Variables

● A multivalued variable V that takes values from a
real interval [a,b] is called a continuous random
variable

● P(V=v)=0, we want to compute P(c≤V≤d)
● V is described by a probability density function
ρ: [a,b]→[0,1]

● ρ(v) is such that

Pc≤V≤d =∫c

d
vdv

18

Properties of Continuous Random Variables

● The same as those of discrete random variables
where summation is replaced by integration:

● Marginalization (sum rule)

● Conditional probability (product rule)

....

 x =∫x , yd y

 x , y =x∣y  y 

19

Mixed Distribution

● We can have a conjunction of discrete and
continuous variables

● Joint: if one of the variables is continuous, the joint
is a density:
– X discrete, Y continuous: ρ(x,y)

● Conditional joint:
– X discrete, Y continuous: P(x|y)

– X discrete, Y continuous, Z discrete: ρ(x,y|z)

20

Domain Modeling

● We use a set of random variables to describe the
domain of interest

● Example: home intrusion detection system,
variables:

– Earthquake E, values e
1
=no, e

2
=moderate, e

3
=severe

– Burglary B, values: b
1
=no, b

2
=yes through door, b

3
=yes

through window

– Alarm A, values a
1
=no, a

2
=yes

– Neighbor call N, values n
1
=no, n

2
=yes

21

Inference

● We would like to answer the following questions
– What is the probability of a burglary through the door?

(compute P(b
2
), belief computation)

– What is the probability of a burglary through the window
given that the neighbor called ? (compute P(b

2
|n

2
), belief

updating)

22

Inference

– What is the probability of a burglary through the door
given that there was a moderate earthquake and the
neighbor called ? (compute P(b

2
|n

2
,e

2
), belief updating)

– What is the probability of a burglary through the door
and of the alarm ringing given that there was a moderate
earthquake and the neighbor called ? (compute P(a

2
,b

2
|

n
2
,e

2
), belief updating)

– What is the most likely value for burglary given that the
neighbor called (argmax

b
 P(b|n

2
), belief revision)

23

Types of Problems

● Diagnosis: P(cause|symptom)=?
● Prediction: P(symptom|cause)=?

● Classification: argmax
class

P(class|data)

24

Inference

● In general, we want to compute the probability
P(q|e)
– of a query q (assignment of values to a set of variables

Q)

– given the evidence e (assignment of values to a set of
variables E)

25

Joint Probability Distribution

● The joint probability distribution (jpd) of a set of
variables U is given by P(u) for all values u

● For our example
– U={E,B,A,N}

– We have the jpd if we know P(u)=P(e,b,a,n) for all the
possible values e, b, a, n.

26

Inference

● If we know the jpd, we can answer all the possible
queries:

Pq∣e=
Pq ,e
Pe 

=
∑x , X∈U ∖Q∖ E

Px ,q ,e 

∑x , X ∈U ∖E
Px ,e 

27

Problem

● If we have n binary variables (|U|=n), knowing the
jpd requires storing O(2n) different values.

● Even if had the space to store all the 2n different
values, computing P(q|e) would require O(2n)
operations

● Impractical for real world domains
● How to avoid the space and time problems? Use

conditional independence assertions

28

Conditional Independence

● X, Y, Z vectors of multivalued variables
● X and Y are conditionally independent given Z if

● We write I<X,Z,Y>
● Special case: X and Y are independent if

Px∣y , z =Px∣z wheneverP y , z 0

Px∣y =Px wheneverP y 0

29

Chain Rule

● n random variables X
1
,...,X

n

● Let U={X
1
,...,X

n
}

● Joint event u=(x
1
,...,x

n
)

● Chain rule:

Pu=Px1, , xn

=Pxn∣xn�1 , x1Px2∣x1Px1

=∏i=1

n
Pxi∣xi�1 , x1

30

Conditional Independence

● Π
i
 is a subset of {X

i-1
,...,X

1
} such that

● X
i
 is conditionally independent of {X

i-1
,...,X

1
}\Π

i

given Π
i

● where π
i
 is a set of values for Π

i

● Π
i
 parents of X

i

Pxi∣xi�1 , x1=Pxi∣i 

31

Conditional Independence

● Knowing Π
i
for all i we could write

Pu=Px1, , xn

=Pxn∣xn�1 , x1Px2∣x1Px1

=Pxn∣nPx2∣2Px1∣1

=∏i=1

n
Pxi∣i

32

Conditional Independence

● In order to compute P(u) we have to store

● for all values x
i
 and π

i

● P(x
i
 |π

i
): Conditional probability table

● If Π
i
 is much smaller than the set {X

i-1
,...,X

1
}, then

we have huge savings
● If k is the maximum number of parents of a variable,

then storage is O(n2k) instead of O(2n)

Pxi∣i

33

Graphical Representation

● We can represent the conditional independence
assertions using a directed graph network with a
node per variable

● Π
i
 is the set of parents of X

i

● The graph is acyclic

34

Example Network

B

A

N

E

● Variable order: E,B,A,N
● Independences

Pe
Pb∣e=Pb
Pa∣b ,e=Pa∣b ,e
Pn∣a ,b ,e=Pn∣a

35

Bayesian Network

● A Bayesian network [Pearl 85] (BN) B is a couple
(G,Θ) where
– G is a directed acyclic graph (DAG) (V,E) where

● V is a set of vertices {X
1
,...,X

n
}

● E is a set of edges, i.e. A set of couples (X
i
,X

j
)

● <X
1
,...,X

n
> is a topological sort of G, i.e. (X

i
,X

j
)∈Ε⇒i<j

– Θ is a set of conditional probability tables (cpts)

– where Πi
 is the set of parents of X

i

{xi∣ i
∣i=1, , n , xi∈X i ,i∈i }

36

Bayesian Network

● A BN (G,Θ) represents a jpd P iff
– each variable is independent of its predecessors given its

parents in G

– θ
xi|πi=P(x

ii
|π

i
) for all i and π

i

● In this case

Px1, , xn=∏i=1

n

Pxi∣i

=∏i=1

n
xi∣ i

Pxi∣xi�1 , x1=Pxi∣i 

37

How to Build a Bayesian Network

● Choose an ordering X1 .. Xn for the variables

● For i = 1 to n:

– Add Xi node to the network

– Set П
i
 to be a minimal subset of {X1…X i-1} such that we

have conditional independence of Xi and all other
members of {X1…X i-1} given Пi

– Assign a value to P(x
i
|π

i
) for all the values of x

i
 and π

i

38

Building a Bayesian Network

● Usually the expert consider a variable X as a child
of Y if Y is a direct cause of X

● Correlation and causality are related but are not the
same thing
– See the book [Pearl 00]

39

Pathfinder system [Suermondt et al. 90]

● Diagnostic system for lymph-node diseases.
● 60 diseases and 100 symptoms and test-results.
● 14,000 probabilities
● Expert consulted to make net.
● 8 hours to determine variables.
● 35 hours for net topology.
● 40 hours for probability table values.

40

Pathfinder system [Suermondt et al. 90]

● Pathfinder is now outperforming the world experts
in diagnosis.

● Being extended to several dozen other medical
domains.

41

Inference with Bayesian Networks

● With a Bayesian Network we save space, do we also
save time?

● Do we have to use the formula

● to compute P(q|e)?

Pq∣e=
∑x , X∈V ∖Q ∖E

Px ,q ,e

∑x , X∈V ∖E
Px ,e 

42

Inference with Bayesian Networks

● There are quicker algorithms
– Exact methods for polytrees

● Belief propagation

– Exact methods for general networks
● Junction tree
● Variable elimination

– Approximate methods for general networks:
● Stochastic sampling
● Loopy belief propagation
● Variational methods,

43

Complexity of Inference

● Exact inference with BN is #P-complete
● #P-complete: a special case of NP-complete

problems
– The answer to a #P-complete problem is the number of

solutions to a NP-complete problem

44

Polytrees

A polytree is a directed acyclic graph in which no two
nodes have more than one path between them.

● i.e. There are no cycles in the corresponding
undirected graph

S

RL

T

L

T

MSM

R

X1
X2

X4
X3

X5

X1 X2

X3

X5

X4

A polytree Not a polytree

45

Belief Propagation [Pearl 88]

● To compute P(x|e) write

● where α is a normalizing constant and
– π(x) represents the support to the assertion X=x by the

non-descendants of X

– λ(x) represents the support to the assertion X=x by the
descendants of X

Px∣e=xx

46

Belief Propagation

● Nodes exchange messages with their neighbors
● π(x) and λ(x) are computed from message received

respectively from the parents and the children of X
● When a node is activated:

– It reads the incoming messages

– It updates π(x) and λ(x)

– It updates P(x|e)

– It generates the new messages to be sent to their parents
and children

47

Messages Received

● Node X,

● Parents U
i

● Children Y
j

U

XV W

Y
2

Y
1

λ
X
(u) π

X
(u)

λ
Y
(x)

π
Y
(x) π

X
(x)

λ
Z
(x)

48

General Networks

● Networks that have
a cycle in their
undirected version

● Two possibilities
– Conditioning

– Clustering

A

B C

D

49

Conditioning

Set to 0 Set to 1

50

Clustering

● Group together variables so that the resulting
network is a polytree and use belief propagation

● Problem: how to find a good clustering?

A

B C

D

A

D

BC

51

Join Trees

● Technique for clustering variables
● Steps:

– Obtain an undirected version of the network

– Perform a graph operation on it (triangulation)

– Each clique is a compound variable

– Add direction to the edges

52

Junction Tree

● The resulting inference algorithm [Lauritzen,
Spiegelhalter 1988] is called
– Junction tree algorithm (jt), or

– Clique propagation

53

Approximate Methods

● Sampling:
– Generate N samples from BN

– Count: Ne: samples that satisfy e, Nqe samples that satisfy
q,e

– P(q|e)=Nqe/Ne

● Loopy belief propagation:
– bp in networks with cycles

– Experiments have shown that it converges to good
quality solutions

54

Sampling

● Let X
1
,...,X

n
 be a topological sort of the variables

● For i=1 to n
– Find parents, if any, of Xi. Call them Xp(i,1), Xp(i,2), …

Xp(i,p(i)).

– Recall the values that those parents were randomly
given: xp(i,1), xp(i,2), …xp(i,p(i)).

– Look up in the cpt for:

P(Xi=xi | Xp(i,1)=xp(i,1),Xp(i,2)=xp(i,2)…Xp(i,p(i))=xp(i,p(i)))

– Randomly choose xi according to this probability

55

Problems in Building BN

● Assessing conditional independence is not always
easy for humans

● Usually done on the basis of causal information
● Assigning a number to each cpt entry is also

difficult for humans

56

Problems in Building BN

● Often we do not have an expert but we are given a
set of observations D={u1,...uN}

● uj is an assignment to all the variables U={X
1
,...,X

n
}

● How to infer the parameters and/or the structure
from D?

57

Learning

● We want to find a BN over U such that the
probability of the data P(D) is maximized

● P(D) is also called the likelihood of the data
● We assume that all the samples are independent

and identically distributed (iid) so

● Often the natural log of P(D) (log likelihood) is
considered

PD=∏i

N

Pui

log PD=∑i

N

log Pui

58

Learning BN

● Tasks
– Computing the parameters given a fixed structure or

– finding the structure and the parameters

● Properties of data:
– complete data: in each data vectors uj, the values of all

the variables are observed

– incomplete data

59

Parameter Learning from Complete Data

● Parameters to be learned

● for all x
i
, π

i
, i=1,...,n

● The values of the parameters that maximize the
likelihood can be computed in closed form

xi∣i
=Pxi∣i

60

Maximum Likelihood Parameters

● Given by relative frequency

● If Ny be the number of vectors of D where Y=y.

● Counting: for each i, for each value π
i
 we must

collect

● where v(i) is the number of values of X
i

xi∣i
=

N xi ,i

Ni

Ci
=〈N xi

1 ,i
, , N xi

v i  ,i
〉

61

Structure Learning from Complete Data

● Perform a local search in the space of possible
structures

● HGC algorithm [Heckerman, Geiger, Chickering
95]:
– Start with a structure BestG' (possibly empty)

– Repeat
● BestG=BestG'
● Let Ref={G'|G' is obtained from BestG' by adding, deleting or

reversing an arc}

● Let BestG'=argmax
G'
 {score(G')|G' ∈Ref}

– while score(BestG')-score(BestG)>0 62

Structure Score

● where

● and ρ(θ
πi
) is the prior density of the vector θ

πi

PD∣G=∫D ,∣Gd

=∫PD∣ ,Gd

=∏i ,i

i


i
=〈xi

1∣i
, ,xi

v i ∣i
〉

scoreG=PD∣G

63

Prior Density of the Parameters

● A common choice for the form of the prior density
is the Dirichlet probability density

● In this case ρ(θ
πi
) is described by v(i) parameters

● Prior counts: it is as if we had previously observed
some data on which the counts are N'

xi,πi

C 'i
=〈N ' xi

1 , i
, , N 'xi

v i  ,i
〉

64

Structure Score

● If the priors for the parameters are Dirichlet, then
the score is called BD (for Bayesian Dirichlet) and

● where BD
i
(G) depends only on C

i
 and C'

i
, the counts

for the family of X
ii

BDG=∑i
BDi G

Ci =〈C
i

1 , ,C
i

p i 〉

C ' i=〈C 'i
1 , ,C 'i

pi 〉

65

Structure Score

● BD(G) is decomposable:
– It can be computed independently for each family

● Each edge operation involves
– 1 family (addition, deletion) or

– 2 families (reversal)

● BD(G') can be quickly computed from BD(BestG)
by changing only the score of the affected families

66

Parameter Learning from Incomplete Data

● The maximum likelihood parameters cannot be
computed in closed form

● An iterative algorithm is necessary: the EM
algorithm

● Finds a (possibly) local maximum of the likelihood

67

EM Algorithm

● Initialize the parameters at random Θ

● Repeat
– Expectation step:

● compute the probability of each value of the missing attributes
using (G,Θ) and inference

● Obtain a new dataset D' by completing D according to the
probabilities computed above

– Compute Θ by maximum likelihood on D'
● Relative frequency

68

Structure Learning from Incomplete Data

● There is no decomposable score
● HGC would not be efficient
● Structural EM:

– Start with a structure BestG' (possibly empty)

– Repeat
● BestG=BestG'
● Compute the parameters of BestG with EM
● Optimize a lower bound of the likelihood of the observed data
● Let BestG' the optimum

– Until no improvement

69

Applications of BN

● Monitoring of emergency care patients
● Model of barley crops yield.
● Diagnosis of carpal tunnel syndrome
● Insulin dose adjustment (DBN) in diabetes .
● Predicting hails in northern Colorado.
● Evaluating insurance applications

70

Applications of BN

● Deciding on the amount of fungicides to be used
against attack of mildew in wheat.

● Assisting experts of electromyography.
● Pedigree of breeding pigs.
● Modeling the biological processes of a water

purification plant.
● Printer troubleshooting (Microsoft Windows)

71

Printer Troubleshooting (Windows 95)

Print Output
OK

Correct
Driver

Uncorrupted
Driver

Correct
Printer Path

Net Cable
Connected

Net/Local
Printing

Printer On
and Online

Correct
Local Port

Correct
Printer

Selected

Local Cable
Connected

Application
Output OK

Print
Spooling On

Correct
Driver

Settings

Printer Memory
Adequate

Network
Up

Spooled
Data OK

GDI Data
Input OK

GDI Data
Output OK

Print
Data OK

PC to Printer
Transport OK

Printer
Data OK

Spool
Process OK

Net
Path OK

Local
Path OK

Paper
Loaded

Local Disk
Space Adequate

Print Output
OK

Correct
Driver

Uncorrupted
Driver

Correct
Printer Path

Net Cable
Connected

Net/Local
Printing

Printer On
and Online

Correct
Local Port

Correct
Printer

Selected

Local Cable
Connected

Application
Output OK

Print
Spooling On

Correct
Driver

Settings

Printer Memory
Adequate

Network
Up

Spooled
Data OK

GDI Data
Input OK

GDI Data
Output OK

Print
Data OK

PC to Printer
Transport OK

Printer
Data OK

Spool
Process OK

Net
Path OK

Local
Path OK

Paper
Loaded

Local Disk
Space Adequate

72

Applications

● Office Assistant in MS Office (“smiley face”)
– Bayesian network based free-text help facility

– help based on past experience (keyboard/mouse use) and
task user is doing currently

73

Markov Networks (MN)

● Approach alternative to BN
● Undirected graph
● Conditional independence represented by graph

separation
● Probability distribution as the product of a set of

potentials (functions of a subset of variables)
divided by a normalization constant

● One potential per clique

74

Markov Network

● Inference:
– Algorithms similar to those for BN (bp, ct, ve, ss..)

– Same complexity

● MN can represent some independences that BN can
not represent and vice versa

● Advantage: we do not have to avoid cycles
● Disadavantage: MN parameters are more difficult to

interpret

75

Combination of Logic and Probability

● BN are not able to deal with domains containing
multiple entities connected by complex relationships

● Logic is not able to represent uncertainty efficiently
● Combination: active research area with many

different proposals
● The most common approach is to design a new

language and then provide a translation into BN or
MN for defining the semantics, performing
inference and learning

76

Some Logical-Probabilitstic Languages

● Probabilistic Relational Models →BN
● Markov Logic Network →MN
● Bayesian Logic Programs →BN
● Logic Programs with Annotated Disjunctions→BN
● Relational Markov Networks →MN
● CLP(BN) →BN

77

CLP(BN) [Costa et al 03]

● Based on Prolog
● Variables in a CLP(BN) program can be random
● Their values, parents and CPTs are defined with the

program
● To answer a query with uninstantiated random

variables, CLP(BN) builds a BN and performs
inference

● The answer will be a probability distribution for the
variables

78

Example

.....
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with
 p([a,b,c,d],
%h h h m h l m h m m m l l h l m l l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
 0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
 0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
 0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10],
[Int,Dif]))
}.
.....

79

Inference

 ?- [school_32].
 ?- registration_grade(r0,G).
p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade(r0,G),
 student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?

80

Availability

● CLP(BN) is included in Yap prolog
● http://www.dcc.fc.up.pt/~vsc/Yap/
● It can use either junction tree or variable elimination

for inference

81

Logic Programs with Annotated Disjunction

● [Vennekens et al. 04]
● Minimal extension of logic programming to allow

the representation of uncertainy
● Clauses of the form

h
1
:α

1
 ; ... ; h

n
:α

n
 :- b

1
,...b

m

● where h
i
 are atoms, b

i
 are literals and α

1
 are

probabilities such that
∑i=1

n

i≤1

82

Semantics

● Each clause can be seen as an experiment: if b
1
,...b

m

is true then h
i
 is true with probability α

i
 or no h

i
 is

true with probability 1-Σ
i
α

i

● Each ground atom is seen as random variable with
values true and false

● We want to assign probabilities to queries
(conjunctions of ground atoms), possibly
conditioned on some evidence

83

Semantics

● Given an LPAD T, generate its grounding T'
● An instance of T is a normal logic program obtained

by selecting one head from each clause of T'
● The probability of an instance is obtained by

multiplying the probability of each head selected
● The probability of a query Q is given by the sum of

the probabilities of the instances that have Q as
consequence

84

Example

heads(Coin):0.5 ; tails(Coin):0.5 :-
toss(Coin), \+ biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin), biased(Coin).

biased(Coin):0.1 ; fair(Coin):0.9.

toss(coin).

P(heads(coin))=0.51

P(heads(coin)|biased(coin))=0.6

85

Conversion to Bayesian Networks

● An LPAD can be converted to a BN that has
– One boolean variable per ground atom

– One variable ch
r
 per ground clause r, with the ground

atoms in the head plus null as values

● The dependencies are defined as follows:
– Ground atom a depends on all the clause variables that

have a in the head

– The CPT assign probability 1 to a if at least one parent is
equal to a and 0 otherwise

86

Conversion to Bayesian Networks

● ch
r
 depends on the variables that appear in the body

of r
● CPT:

– P(ch
r
=h

i
)=α

i
, P(ch

r
=null)=1-Σ

i
α

i
if the body is true

– P(ch
r
=null)=1 if the body is false

87

Inference with LPADs

● Convert to BN and use BN inference
– Problem: the grounding may be very large

● Compute all the possible derivations and compute
the probability that one of these derivations is
possible [Riguzzi 07]

● Suite of reasoning tools for LPADs: cplint

http://www.ing.unife.it/software/cplint/
● It is included in the CVS version of Yap

88

Learning LPADs

● Data D: set of interpretations (i.e. sets of ground
atoms),

● Task: find the parameters of an LPAD that
maximize the likelihood of D:

● Task: find the parameters and the structure of an
LPAD that maximize the likelihood of D

89

Learning Parameters

● ME-compliant LPAD: every couple of ground
clauses that share an atom in the head have mutually
exclusive bodies

● If an LPAD is ME-compliant then the parameters
can be computed in closed form as a ratio of counts
[Riguzzi 04]

● Otherwise [Blookeel, Meert 06]
– Convert the LPAD to a BN

– Use EM since the ch
r
 variables are unobserved in D

i=Phi∣body

90

Learning the Structure

● If the LPAD is ME-compliant then the structure can
be learned by solving a mixed integer programming
problem
– ALLPAD system [Riguzzi 08]

● Otherwise [Blockeel, Meert, 07]
– Use Structural EM to learn a BN

– Convert to LPAD

91

BN Software

● List of BN software
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html\

● BNT: inference and learning, Matlab, open source
● MSBNx: inference, by Microsoft, free closed source
● OpenBayes: inference and learning, Python, open

source
● BNJ: inference and learning, Java, open source
● Weka: learning, Java, open source

92

Resources

● Probabilistic Reasoning in Intelligent Systems by
Judea Pearl. Morgan Kaufmann: 1998.

● Probabilistic Reasoning in Expert Systems by
Richard Neapolitan. Wiley: 1990.

● List of BN Models and Datasets
http://www.cs.huji.ac.il/labs/compbio/Repository/

93

Acknowledgments

● Some slides from

– Andrew Moore's tutorials
http://www.autonlab.org/tutorials/

– Irina Rish and Moninder Singh's tutorial
http://www.research.ibm.com/people/r/rish/

94

References

● [Pearl 85] Pearl, J., "Bayesian Networks: a Model
of Self-Activated Memory for Evidential
Reasoning," UCLA CS Technical Report 850021,
Proceedings, Cognitive Science Society, UC Irvine,
329-334, August 15-17, 1985.

● [Pearl 00] Pearl, J., Causality: Models, Reasoning,
and Inference, Cambridge University Press, 2000

● [Suermondt et al. 90] Henri Jacques Suermondt,
Gregory F. Cooper, David Heckerman, “A
combination of cutset conditioning with clique-tree
propagation in the Pathfinder system”, UAI '90.

95

References

● [Pearl 88] Judea Pearl, Probabilistic Reasoning in
Intelligent Systems, Morgan Kaufmann: 1998.

● [Lauritzen, Spiegelhalter 1988]
● [Heckerman, Geiger, Chickering 95] D. Heckerman,

D. Geiger, D. M. Chickering: “Learning Bayesian
Networks: The Combination of Knowledge and
Statistical Data”, Machine Learning, 20(3), 1995

● [Costa et al 03] V/ Santos Costa, D. Page, M. Qazi,
J. Cussens: “CLP(BN): Constraint Logic
Programming for Probabilistic Knowledge”, UAI03.

96

References

● [Vennekens et al. 04] J.Vennekens, S. Verbaeten
and M. Bruynooghe, “Logic programs with
annotated disjunctions”, ICLP04

● [Riguzzi 07] F. Riguzzi. “A top down interpreter for
lpad and cp-logic”. In Proceedings of the 10th
Congress of the Italian Association for Artificial
Intelligence, number 4733 in Lecture Notes in
Artificial Intelligence, Springer, 2007.

● [Riguzzi 04] F. Riguzzi. “Learning logic programs
with annotated disjunctions”, ILP04.

97

References

● [Blookeel, Meert 06] H. Blockeel, W. Meert:
“Towards Learning Non-recursive LPADs by
Transforming Them into Bayesian Networks”, ILP
2006:

● [Riguzzi 08] F. Riguzzi, “ALLPAD: Approximate
learning of logic programs with annotated
disjunctions”. Machine Learning, 70(2-3), 2008.

● [Blookeel, Meert 07] W. Meert, J. Struyf, H.
Blockeel, “Learning Ground CP-logic Theories by
means of Bayesian Network Techniques”,
MRDM07

