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Summary

● Probability theory
● Conditional independence
● Definition of Bayesian network
● Inference
● Learning
● Logic and probability
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Uncertainty

● Reasoning requires simplifications:
– Birds fly

– Smoke suggests fire

● Treatment of exceptions
● How to reason from uncertain knowledge?
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How to Perform Inference?

● Use non-numerical techniques
– Logicist: non monotonic logic

● Assign to each proposition a numerical measure of 
uncertainty 
– Neo-probabilist: use probability theory

– Neo-calculist: use other theories: 
● fuzzy logic
● certainty factors
● Dempster-Shafer
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Probability Theory

● A: Proposition,
– Ex: A=The coin will land heads 

● P(A): probability of A
● Frequentist approach: probability as relative 

frequency
– Repeated random experiments

– P(A) is the fraction of experiments in which A is true

● Bayesian approach: probability as a degree of belief
● Example: B=burglary tonight

6

Axioms of Probability Theory

0≤PA≤1

PSure Proposition=1

PA∨B=PAPB
if AandBare mutually exclusive
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Probability Rules

● Any event A can be written as the or of two disjoint 
events (A and B) and (A and ¬B)

● Where P(A,B)=P(A∧B) is called the joint 
probability of A and B

● In general, if B
i
 i=1,2,...,n is a set of exhaustive and 

mutually exclusive propositions

● Moreover

PA=PA , BPA ,¬B

PA=∑i
PA , Bi

PAP¬A=1

marginalization/
sum rule
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Conditional Probabilities

● P(A|B)= belief of A given that I know B
● Relation to P(A,B)

PA , B=PA∣BPB

PA∣B=
PA , B

PB

product rule
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Bayes Theorem

● Relationship between P(A|B) and P(B|A)

● P(A): prior probability
● P(A|B): posterior probability (after learning B)

PA∣B=
PB∣APA

PB
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Conditional Independence

● If P(A|B)=P(A) we say that A and B are independent
● If P(A|B,C)=P(A|C) we say that A and B are 

conditionally independent given C
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Chain Rule

● n events E
1
,...,E

n

● Joint event (E
1
,...,E

n
)

● Chain rule:

PE1, , En=PEn∣En�1 , E1PEn�1 , , E1

PE1, , En�1=PEn�1∣En�2 , E1PEn�2 , , E1

⋯

PE1, , En=PEn∣En�1 , E1PE2∣E1PE1=

∏i=1

n

PEi∣Ei�1 ,E1 12

Multivalued Hypothesis

● Propositions can be seen as binary variables, i.e. 
variables taking values true or false
– Burglary B: true or false

● Generalization: multivalued variables
– Semaphore S, values: green, yellow, red 

– Propositions are a special case with two values
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Discrete Random Variables

● Variable V, values v
i
 i=1,...,n

● V is also called a discrete random variable

● V=v
i
 is a proposition

● Propositions V=v
i
 i=1,...,n exhaustive  and mutually 

exclusive

● P(v
i
) stands for P(V=v

i
)

● V is described by the set {P(v
i
)|i=1,...,n}, the 

probability distribution of V, indicated with P(V)
14

Notation

● We indicate with v a generic value of V
● Set or vector of variables: V,values v
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Marginalization

● Multivalued variables A and B

● b
ii
 i=1,...,n values of B

● Or 

● In general

Pa=∑i
Pa ,bi Pa=∑i
Pa ,bi 

Pa=∑b
Pa ,b

Px =∑y
Px , y sum rule
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Conditional Probabilities

● P(a|b)= belief of A=a given that know B=b
● Relation to P(a,b)

● Bayes theorem

Pa ,b=Pa∣bPb

Pa∣b=
Pa ,b
Pb

Pa∣b=
Pb∣a pa

Pb

product rule
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Continuous Random Variables

● A multivalued variable V that takes values from a 
real interval [a,b] is called a continuous random 
variable

● P(V=v)=0, we want to compute P(c≤V≤d)
● V is described by a probability density function   
ρ: [a,b]→[0,1]

● ρ(v) is such that

Pc≤V≤d =∫c

d
vdv
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Properties of Continuous Random Variables

● The same as those of discrete random variables 
where summation is replaced by integration:

● Marginalization (sum rule)

● Conditional probability (product rule)

....

 x =∫x , yd y

 x , y =x∣y  y 
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Mixed Distribution

● We can have a conjunction of discrete and 
continuous variables

● Joint: if one of the variables is continuous, the joint 
is a density:
– X discrete, Y continuous: ρ(x,y)

● Conditional joint: 
– X discrete, Y continuous: P(x|y)

– X discrete, Y continuous, Z discrete: ρ(x,y|z)
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Domain Modeling

● We use a set of random variables to describe the 
domain of interest

● Example: home intrusion detection system, 
variables:

– Earthquake E, values e
1
=no, e

2
=moderate, e

3
=severe

– Burglary B, values: b
1
=no, b

2
=yes through door, b

3
=yes 

through window

– Alarm A, values a
1
=no, a

2
=yes

– Neighbor call N, values n
1
=no, n

2
=yes
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Inference

● We would like to answer the following questions
– What is the probability of a burglary through the door? 

(compute P(b
2
),  belief computation)

– What is the probability of a burglary through the window 
given that the neighbor called ? (compute P(b

2
|n

2
),  belief 

updating)
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Inference

– What is the probability of a burglary through the door 
given that there was a moderate earthquake and the 
neighbor called ? (compute P(b

2
|n

2
,e

2
), belief updating )

– What is the probability of a burglary through the door 
and of the alarm ringing given that there was a moderate 
earthquake and the neighbor called ? (compute P(a

2
,b

2
|

n
2
,e

2
), belief updating)

– What is the most likely value for burglary given that the 
neighbor called (argmax

b
 P(b|n

2
), belief revision)
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Types of Problems

● Diagnosis: P(cause|symptom)=?
● Prediction: P(symptom|cause)=?

● Classification: argmax
class 

P(class|data)

24

Inference

● In general, we want to compute the probability    
P(q|e) 
– of a query q (assignment of values to a set of variables 

Q) 

– given the evidence e (assignment of values to a set of 
variables E) 
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Joint Probability Distribution

● The joint probability distribution (jpd) of a set of 
variables U is given by P(u) for all values u

● For our example
–  U={E,B,A,N}

– We have the jpd if we know P(u)=P(e,b,a,n) for all the 
possible values e, b, a, n.

26

Inference

● If we know the jpd, we can answer all the possible 
queries:

Pq∣e=
Pq ,e
Pe 

=
∑x , X∈U ∖Q∖ E

Px ,q ,e 

∑x , X ∈U ∖E
Px ,e 
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Problem

● If we have n binary variables (|U|=n), knowing the 
jpd requires storing O(2n) different values.

● Even if had the space to store all the 2n different 
values, computing P(q|e) would require O(2n) 
operations

● Impractical for real world domains
● How to avoid the space and time problems? Use 

conditional independence assertions

28

Conditional Independence

● X, Y, Z vectors of multivalued variables
● X and Y are conditionally independent given Z if

● We write I<X,Z,Y>
● Special case: X and Y are  independent if

Px∣y , z =Px∣z wheneverP y , z 0

Px∣y =Px wheneverP y 0
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Chain Rule

● n random variables X
1
,...,X

n

● Let U={X
1
,...,X

n
}

● Joint event u=(x
1
,...,x

n
)

● Chain rule:

Pu=Px1, , xn

=Pxn∣xn�1 , x1Px2∣x1Px1

=∏i=1

n
Pxi∣xi�1 , x1
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Conditional Independence

● Π
i
 is a subset of {X

i-1
,...,X

1
} such that

● X
i
 is conditionally independent of {X

i-1
,...,X

1
}\Π

i
 

given Π
i

● where π
i
 is a set of values for Π

i
 

● Π
i
 parents of X

i

Pxi∣xi�1 , x1=Pxi∣i 
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Conditional Independence

● Knowing Π
i 
for all i we could write

Pu=Px1, , xn

=Pxn∣xn�1 , x1Px2∣x1Px1

=Pxn∣nPx2∣2Px1∣1

=∏i=1

n
Pxi∣i
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Conditional Independence

● In order to compute P(u) we have to store 

● for all values x
i
 and π

i
 

● P(x
i
 |π

i
): Conditional probability table

● If Π
i
 is much smaller than the set {X

i-1
,...,X

1
}, then 

we have huge savings
● If k is the maximum number of parents of a variable, 

then storage is O(n2k) instead of O(2n)

Pxi∣i



33

Graphical Representation

● We can represent the conditional independence 
assertions using a directed graph network with a 
node per variable

● Π
i
 is the set of parents of X

i

● The graph is acyclic

34

Example Network

B

A

N

E

● Variable order: E,B,A,N
● Independences

Pe
Pb∣e=Pb
Pa∣b ,e=Pa∣b ,e
Pn∣a ,b ,e=Pn∣a
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Bayesian Network

● A Bayesian network [Pearl 85] (BN) B is a couple 
(G,Θ) where 
– G is a directed acyclic graph (DAG) (V,E) where

● V is a set of vertices {X
1
,...,X

n
}

● E is a set of edges, i.e. A set of couples (X
i
,X

j
) 

● <X
1
,...,X

n
> is a topological sort of G, i.e. (X

i
,X

j
)∈Ε⇒i<j

– Θ is a set of conditional probability tables (cpts) 

– where  Πi
 is the set of parents of X

i

{xi∣ i
∣i=1, , n , xi∈X i ,i∈i }
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Bayesian Network

● A BN (G,Θ) represents a jpd P iff 
– each variable is independent of its predecessors given its 

parents in G

–  θ
xi|πi=P(x

ii
|π

i
) for all i and π

i

● In this case

Px1, , xn=∏i=1

n

Pxi∣i

=∏i=1

n
xi∣ i

Pxi∣xi�1 , x1=Pxi∣i 
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How to Build a Bayesian Network

● Choose an ordering X1 .. Xn for the variables

● For i = 1 to n:

– Add Xi node to the network

– Set П
i
 to be a minimal subset of {X1…X i-1} such that we 

have conditional independence of Xi and all other 
members of {X1…X i-1} given Пi

– Assign a value to P(x
i
|π

i
) for all the values of x

i
 and π

i

38

Building a Bayesian Network

● Usually the expert consider a variable X as a child 
of Y if Y is a direct cause of X 

● Correlation and causality are related but are not the 
same thing
– See the book [Pearl 00]
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Pathfinder system [Suermondt et al. 90]

● Diagnostic system for lymph-node diseases.
● 60 diseases and 100 symptoms and test-results.
● 14,000 probabilities
● Expert consulted to make net.
● 8 hours to determine variables.
● 35 hours for net topology.
● 40 hours for probability table values.

40

Pathfinder system [Suermondt et al. 90]

● Pathfinder is now outperforming the world experts 
in diagnosis.  

● Being extended to several dozen other medical 
domains.
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Inference with Bayesian Networks

● With a Bayesian Network we save space, do we also 
save time?

● Do we have to use the formula

● to compute P(q|e)?

Pq∣e=
∑x , X∈V ∖Q ∖E

Px ,q ,e

∑x , X∈V ∖E
Px ,e 
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Inference with Bayesian Networks

● There are quicker algorithms
– Exact methods for polytrees

● Belief propagation

– Exact methods for general networks
● Junction tree
● Variable elimination

– Approximate methods for general networks: 
● Stochastic sampling
● Loopy belief propagation
● Variational methods, 

43

Complexity of Inference

● Exact inference with BN is #P-complete
● #P-complete: a special case of NP-complete 

problems
– The answer to a #P-complete problem is the number of 

solutions to a NP-complete problem
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Polytrees

A polytree is a directed acyclic graph in which no two 
nodes have more than one path between them.

● i.e. There are no cycles in the corresponding 
undirected graph

S

RL

T

L

T

MSM

R

X1
X2

X4
X3

X5

X1 X2

X3

X5

X4

A polytree Not a polytree
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Belief Propagation [Pearl 88]

● To compute P(x|e) write

● where α is a normalizing constant and
– π(x) represents the support to the assertion X=x by the 

non-descendants of X

– λ(x) represents the support to the assertion X=x by the 
descendants of X

Px∣e=xx
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Belief Propagation

● Nodes exchange messages with their neighbors
● π(x) and λ(x) are computed from message received 

respectively from the parents and the children of X
● When a node is activated:

– It reads the incoming messages

– It updates π(x) and λ(x)

– It updates P(x|e)

– It generates the new messages to be sent to their parents 
and children
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Messages Received

● Node X, 

● Parents U
i

● Children Y
j

U

XV W

Y
2

Y
1

λ
X
(u) π

X
(u)

λ
Y
(x)

π
Y
(x) π

X
(x)

λ
Z
(x)
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General Networks

● Networks that have 
a cycle in their 
undirected version 

● Two possibilities
– Conditioning

– Clustering

A

B C

D
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Conditioning

Set to 0 Set to 1

50

Clustering

● Group together variables so that the resulting 
network is a polytree and use belief propagation

● Problem: how to find a good clustering?

A

B C

D

A

D

BC
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Join Trees

● Technique for clustering variables
● Steps:

– Obtain an undirected version of the network

– Perform a graph operation on it (triangulation)

– Each clique is a compound variable

– Add direction to the edges

52

Junction Tree

● The resulting inference algorithm [Lauritzen, 
Spiegelhalter 1988] is called
– Junction tree algorithm (jt), or

– Clique propagation
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Approximate Methods

● Sampling:
– Generate N samples from  BN

– Count: Ne: samples that satisfy e, Nqe samples that satisfy 
q,e

– P(q|e)=Nqe/Ne

● Loopy belief propagation: 
– bp in networks with cycles

– Experiments have shown that it converges to good 
quality solutions
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Sampling

● Let X
1
,...,X

n
 be a topological sort of the variables

● For i=1 to n
– Find parents, if any, of Xi. Call them Xp(i,1), Xp(i,2), …

Xp(i,p(i)).

– Recall the values that those parents were randomly 
given: xp(i,1), xp(i,2), …xp(i,p(i)).

– Look up in the cpt for:

P(Xi=xi  | Xp(i,1)=xp(i,1),Xp(i,2)=xp(i,2)…Xp(i,p(i))=xp(i,p(i)))

– Randomly choose xi according to this probability

55

Problems in Building BN

● Assessing conditional independence is not always 
easy for humans

● Usually done on the basis of causal information
● Assigning a number to each cpt entry is also 

difficult for humans
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Problems in Building BN

● Often we do not have an expert but we are given a 
set of observations D={u1,...uN}

● uj is an assignment to all the variables U={X
1
,...,X

n
}

● How to infer the parameters and/or the structure 
from D?
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Learning

● We want to find a BN over U such that the 
probability of the data P(D) is maximized

● P(D) is also called the likelihood of the data
● We assume that all the samples are independent 

and identically distributed (iid) so

● Often the natural log of P(D) (log likelihood) is 
considered

PD=∏i

N

Pui

log PD=∑i

N

log Pui
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Learning BN

● Tasks
– Computing the parameters given a fixed structure or

– finding the structure and the parameters

● Properties of data:
– complete data: in each data vectors uj, the values of all 

the variables are observed

– incomplete data

59

Parameter Learning from Complete Data

● Parameters to be learned

● for all x
i
, π

i
, i=1,...,n

● The values of the parameters that maximize the 
likelihood can be computed in closed form

xi∣i
=Pxi∣i
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Maximum Likelihood Parameters

● Given by relative frequency

● If Ny be the number of vectors of D where Y=y.

● Counting: for each i, for each value  π
i
 we must 

collect

● where v(i) is the number of values of X
i

xi∣i
=

N xi ,i

Ni

Ci
=〈N xi

1 ,i
, , N xi

v i  ,i
〉
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Structure Learning from Complete Data

● Perform a local search in the space of possible 
structures

● HGC algorithm [Heckerman, Geiger, Chickering 
95]:
– Start with a structure BestG' (possibly empty)

– Repeat
● BestG=BestG'
● Let Ref={G'|G' is obtained from BestG' by adding, deleting or 

reversing an arc}

● Let BestG'=argmax
G'
 {score(G')|G' ∈Ref}

– while score(BestG')-score(BestG)>0 62

Structure Score

● where

● and ρ(θ
πi
) is the prior density of the vector θ

πi

PD∣G=∫D ,∣Gd

=∫PD∣ ,Gd

=∏i ,i

i


i
=〈xi

1∣i
, ,xi

v i ∣i
〉

scoreG=PD∣G
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Prior Density of the Parameters

● A common choice for the form of the prior density 
is the Dirichlet probability density

● In this case ρ(θ
πi
) is described by v(i) parameters

● Prior counts: it is as if we had previously observed 
some data on which the counts are N'

xi,πi

C 'i
=〈N ' xi

1 , i
, , N 'xi

v i  ,i
〉
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Structure Score

● If the priors for the parameters are Dirichlet, then 
the score is called BD (for Bayesian Dirichlet) and 

● where BD
i
(G) depends only on C

i
 and C'

i
, the counts 

for the family of X
ii

BDG=∑i
BDi G

Ci =〈C
i

1 , ,C
i

p i 〉

C ' i=〈C 'i
1 , ,C 'i

pi 〉
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Structure Score

● BD(G) is decomposable:
– It can be computed independently for each family

● Each edge operation involves
– 1 family (addition, deletion) or

– 2 families (reversal)

● BD(G') can be quickly computed from BD(BestG) 
by changing only the score of the affected families

66

Parameter Learning from Incomplete Data

● The maximum likelihood parameters cannot be 
computed in closed form

● An iterative algorithm is necessary: the EM 
algorithm

● Finds a (possibly) local maximum of the likelihood

67

EM Algorithm

● Initialize the parameters at random Θ

● Repeat
– Expectation step: 

● compute the probability of each value of the missing attributes 
using (G,Θ) and inference

● Obtain a new dataset D' by completing D according to the 
probabilities computed above

– Compute Θ by maximum likelihood on D'
● Relative frequency

68

Structure Learning from Incomplete Data

● There is no decomposable score
● HGC would not be efficient
● Structural EM:

– Start with a structure BestG' (possibly empty)

– Repeat
● BestG=BestG'
● Compute the parameters of BestG with EM
● Optimize a lower bound of the likelihood of the observed data 
● Let BestG' the optimum

– Until no improvement
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Applications of BN

● Monitoring of emergency care patients
● Model of barley crops yield.
● Diagnosis of carpal tunnel syndrome
● Insulin dose adjustment (DBN) in diabetes .
● Predicting hails in northern Colorado.
● Evaluating insurance applications
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Applications of BN

● Deciding on the amount of fungicides to be used 
against attack of mildew in wheat.

● Assisting experts of electromyography.
● Pedigree of breeding pigs.
● Modeling the biological processes of a water 

purification plant.
● Printer troubleshooting  (Microsoft Windows)
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Printer Troubleshooting  (Windows 95)

Print Output
OK

Correct
Driver

Uncorrupted
Driver

Correct
Printer Path

Net Cable
Connected

Net/Local
Printing

Printer On 
and Online

Correct
Local Port

Correct 
Printer

Selected

Local Cable
Connected

Application
Output OK

Print
Spooling On

Correct 
Driver

Settings

Printer Memory
Adequate

Network
Up

Spooled
Data OK

GDI Data
Input OK

GDI Data 
Output OK

Print
Data OK

PC to Printer
Transport OK

Printer
Data OK

Spool
Process OK

Net
Path OK

Local
Path OK

Paper
Loaded

Local Disk
Space Adequate

Print Output
OK

Correct
Driver

Uncorrupted
Driver

Correct
Printer Path

Net Cable
Connected

Net/Local
Printing

Printer On 
and Online

Correct
Local Port

Correct 
Printer

Selected

Local Cable
Connected

Application
Output OK

Print
Spooling On

Correct 
Driver

Settings

Printer Memory
Adequate

Network
Up

Spooled
Data OK

GDI Data
Input OK

GDI Data 
Output OK

Print
Data OK

PC to Printer
Transport OK

Printer
Data OK

Spool
Process OK

Net
Path OK

Local
Path OK

Paper
Loaded

Local Disk
Space Adequate
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Applications

● Office Assistant in MS Office (“smiley face”)
– Bayesian network based free-text help facility

– help based on past experience (keyboard/mouse use) and 
task user is doing currently
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Markov Networks (MN)

● Approach alternative to BN
● Undirected graph
● Conditional independence represented by graph 

separation
● Probability distribution as the product of a set of 

potentials (functions of a subset of variables) 
divided by a normalization constant

● One potential per clique
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Markov Network

● Inference: 
– Algorithms similar to those for BN (bp, ct, ve, ss..)

– Same complexity

● MN can represent some independences that BN can 
not represent and vice versa

● Advantage: we do not have to avoid cycles
● Disadavantage: MN parameters are more difficult to 

interpret
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Combination of Logic and Probability

● BN are not able to deal with domains containing 
multiple entities connected by complex relationships

● Logic is not able to represent uncertainty efficiently
● Combination: active research area with many 

different proposals
● The most common approach is to design a new 

language and then provide a translation into BN or 
MN for defining the semantics, performing 
inference and learning
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Some Logical-Probabilitstic Languages

● Probabilistic Relational Models →BN
● Markov Logic Network →MN
● Bayesian Logic Programs →BN
● Logic Programs with Annotated Disjunctions→BN
● Relational Markov Networks →MN
● CLP(BN) →BN
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CLP(BN) [Costa et al 03]

● Based on Prolog
● Variables in a CLP(BN) program can be random
● Their values, parents and CPTs are defined with the 

program
● To answer a query with uninstantiated random 

variables, CLP(BN) builds a BN and performs 
inference

● The answer will be a probability distribution for the 
variables
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Example

.....
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with 
 p([a,b,c,d],
%h h  h m  h l  m h  m m  m l  l h  l m  l l 
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
 0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
 0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
 0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],  
[Int,Dif]))
}.
.....
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Inference

   ?- [school_32].
   ?- registration_grade(r0,G).
p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade(r0,G),
   student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?
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Availability

● CLP(BN) is included in Yap prolog
● http://www.dcc.fc.up.pt/~vsc/Yap/
● It can use either junction tree or variable elimination 

for inference
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Logic Programs with Annotated Disjunction

● [Vennekens et al. 04]
● Minimal extension of logic programming to allow 

the representation of uncertainy
● Clauses of the form

h
1
:α

1
 ; ... ; h

n
:α

n
 :- b

1
,...b

m

● where h
i
 are atoms, b

i
 are literals and α

1
 are 

probabilities such that 
∑i=1

n

i≤1
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Semantics

● Each clause can be seen as an experiment: if b
1
,...b

m 

is true then h
i
 is true with probability α

i
 or no h

i
 is 

true with probability 1-Σ
i
α

i

● Each ground atom is seen as random variable with 
values true and false

● We want to assign probabilities to queries 
(conjunctions of ground atoms), possibly 
conditioned on some evidence
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Semantics

● Given an LPAD T, generate its grounding T'
● An instance of T is a normal logic program obtained 

by selecting one head from each clause of T'
● The probability of an instance is obtained by 

multiplying the probability of each head selected
● The probability of a query Q is given by the sum of 

the probabilities of the instances that have Q as 
consequence
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Example

heads(Coin):0.5 ; tails(Coin):0.5 :- 
toss(Coin), \+ biased(Coin). 

heads(Coin):0.6 ; tails(Coin):0.4 :- 
toss(Coin),  biased(Coin). 

biased(Coin):0.1 ; fair(Coin):0.9. 

toss(coin).

P(heads(coin))=0.51

P(heads(coin)|biased(coin))=0.6
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Conversion to Bayesian Networks

● An LPAD can be converted to a BN that has
– One boolean variable per ground atom

– One variable ch
r
 per ground clause r, with the ground 

atoms in the head plus null as values

● The dependencies are defined as follows:
– Ground atom a depends on all the clause variables that 

have a in the head

– The CPT assign probability 1 to a if at least one parent is 
equal to a and 0 otherwise
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Conversion to Bayesian Networks

● ch
r
 depends on the variables that appear in the body 

of r
● CPT:

– P(ch
r
=h

i
)=α

i
, P(ch

r
=null)=1-Σ

i
α

i 
if the body is true

– P(ch
r
=null)=1 if the body is false
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Inference with LPADs

● Convert to BN and use BN inference
– Problem: the grounding may be very large

● Compute all the possible derivations and compute 
the probability that one of these derivations is 
possible [Riguzzi 07]

● Suite of reasoning tools for LPADs: cplint

http://www.ing.unife.it/software/cplint/
● It is included in the CVS version of Yap
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Learning LPADs

● Data D: set of interpretations (i.e. sets of ground 
atoms), 

● Task: find the parameters of an LPAD that 
maximize the likelihood of D: 

● Task: find the parameters and the structure of an 
LPAD that maximize the likelihood of D
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Learning Parameters

● ME-compliant LPAD: every couple of ground 
clauses that share an atom in the head have mutually 
exclusive bodies

● If an LPAD is ME-compliant then the parameters 
can be computed in closed form as a ratio of counts 
[Riguzzi 04]

● Otherwise [Blookeel, Meert 06]
– Convert the LPAD to a BN

– Use EM since the ch
r
 variables are unobserved in D

i=Phi∣body
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Learning the Structure

● If the LPAD is ME-compliant then the structure can 
be learned by solving a mixed integer programming 
problem 
– ALLPAD system [Riguzzi 08]

● Otherwise [Blockeel, Meert, 07]
– Use Structural EM to learn a BN

– Convert to LPAD
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BN Software

● List of BN software
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html\

● BNT: inference and learning, Matlab, open source
● MSBNx: inference, by Microsoft, free closed source
● OpenBayes: inference and learning, Python, open 

source
● BNJ: inference and learning, Java, open source
● Weka: learning, Java, open source
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Resources

● Probabilistic Reasoning in Intelligent Systems by 
Judea Pearl. Morgan Kaufmann: 1998.

● Probabilistic Reasoning in Expert Systems by 
Richard Neapolitan. Wiley: 1990.

● List of BN Models and Datasets
http://www.cs.huji.ac.il/labs/compbio/Repository/
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Acknowledgments

● Some slides from 

– Andrew Moore's tutorials 
http://www.autonlab.org/tutorials/

– Irina Rish and Moninder Singh's tutorial
http://www.research.ibm.com/people/r/rish/
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