Summary

Bayesian Networks Learning

Fabrizio Riguzzi
Engineering Department

university of ferrara
600 YEARS OF LOOKING FORWARD.

- Probability theory
- Conditional independence
- Definition of Bayesian network
- Inference
- Learning
- Logic and probability

Uncertainty

- Reasoning requires simplifications:
- Birds fly
- Smoke suggests fire
- Treatment of exceptions
- How to reason from uncertain knowledge?

How to Perform Inference?

- Use non-numerical techniques
- Logicist: non monotonic logic
- Assign to each proposition a numerical measure of uncertainty
- Neo-probabilist: use probability theory
- Neo-calculist: use other theories:
- fuzzy logic
- certainty factors
- Dempster-Shafer

Probability Theory

Axioms of Probability Theory

- A: Proposition,
- Ex: A=The coin will land heads
- P(A): probability of A
- Frequentist approach: probability as relative frequency
- Repeated random experiments
- $\mathrm{P}(\mathrm{A})$ is the fraction of experiments in which A is true
- Bayesian approach: probability as a degree of belief
- Example: B=burglary tonight

$$
0 \leq P(A) \leq 1
$$

$P($ Sure Proposition $)=1$
$P(A \vee B)=P(A)+P(B)$
if A and B are mutually exclusive

Probability Rules

- Any event A can be written as the or of two disjoint events (A and B) and (A and $\neg \mathrm{B}$)

$$
P(A)=P(A, B)+P(A, \neg B) \quad \begin{aligned}
& \text { marginalization/ } \\
& \text { sum rule }
\end{aligned}
$$

- Where $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \wedge \mathrm{B})$ is called the joint probability of A and B
- In general, if $\mathrm{B}_{\mathrm{i}} \mathrm{i}=1,2, \ldots, \mathrm{n}$ is a set of exhaustive and mutually exclusive propositions

$$
P(A)=\sum_{i} P\left(A, B_{i}\right)
$$

- Moreover

$$
P(A)+P(\neg A)=1
$$

Conditional Probabilities

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ belief of A given that I know B
- Relation to $\mathrm{P}(\mathrm{A}, \mathrm{B})$

$$
\begin{gathered}
P(A, B)=P(A \mid B) P(B) \quad \text { product rule } \\
P(A \mid B)=\frac{P(A, B)}{P(B)}
\end{gathered}
$$

Bayes Theorem

- Relationship between $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- $\mathrm{P}(\mathrm{A})$: prior probability
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$: posterior probability (after learning B)

Conditional Independence

- If $P(A \mid B)=P(A)$ we say that A and B are independent
- If $P(A \mid B, C)=P(A \mid C)$ we say that A and B are conditionally independent given C

Chain Rule

- n events $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}$
- Joint event $\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}\right)$

$$
\begin{aligned}
& P\left(E_{1}, \ldots, E_{n}\right)=P\left(E_{n} \mid E_{n-1} \ldots, E_{1}\right) P\left(E_{n-1}, \ldots, E_{1}\right) \\
& P\left(E_{1}, \ldots, E_{n-1}\right)=P\left(E_{n-1} \mid E_{n-2} \ldots, E_{1}\right) P\left(E_{n-2}, \ldots, E_{1}\right)
\end{aligned}
$$

- Chain rule:

$$
\begin{aligned}
P\left(E_{1, \ldots}, E_{n}\right)= & P\left(E_{n} \mid E_{n-1} \ldots, E_{1}\right) \ldots P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)= \\
& \prod_{i=1}^{n} P\left(E_{i} \mid E_{i-1}, \ldots E_{1}\right)
\end{aligned}
$$

Multivalued Hypothesis

- Propositions can be seen as binary variables, i.e. variables taking values true or false
- Burglary B: true or false
- Generalization: multivalued variables
- Semaphore S, values: green, yellow, red
- Propositions are a special case with two values

Discrete Random Variables

- Variable V, values $\mathrm{v}_{\mathrm{i}} \mathrm{i}=1, \ldots, \mathrm{n}$
- V is also called a discrete random variable
- $\mathrm{V}=\mathrm{v}_{\mathrm{i}}$ is a proposition
- Propositions $\mathrm{V}=\mathrm{v}_{\mathrm{i}} \mathrm{i}=1, \ldots, \mathrm{n}$ exhaustive and mutually exclusive
- $\mathrm{P}\left(\mathrm{v}_{\mathrm{i}}\right)$ stands for $\mathrm{P}\left(\mathrm{V}=\mathrm{v}_{\mathrm{i}}\right)$
- V is described by the set $\left\{P\left(v_{i}\right) \mid i=1, \ldots, n\right\}$, the probability distribution of V , indicated with $\mathrm{P}(\mathrm{V})$

Marginalization

- Multivalued variables A and B
- $\mathrm{b}_{\mathrm{i}} \mathrm{i}=1, \ldots, \mathrm{n}$ values of B

$$
P(a)=\sum_{i} P\left(a, b_{i}\right)
$$

- Or

$$
P(a)=\sum_{b} P(a, b)
$$

- In general

$$
P(\boldsymbol{x})=\sum_{y} P(\boldsymbol{x}, \boldsymbol{y}) \quad \text { sum rule }
$$

- We indicate with v a generic value of V
- Set or vector of variables: \mathbf{V}, values \mathbf{v}

Notation

Conditional Probabilities

- $\mathrm{P}(\mathrm{a} \mid \mathrm{b})=$ belief of $\mathrm{A}=$ a given that know $\mathrm{B}=\mathrm{b}$
- Relation to $\mathrm{P}(\mathrm{a}, \mathrm{b})$

$$
\begin{gathered}
P(a, b)=P(a \mid b) P(b) \quad \text { product rule } \\
P(a \mid b)=\frac{P(a, b)}{P(b)}
\end{gathered}
$$

- Bayes theorem

$$
P(a \mid b)=\frac{P(b \mid a) p(a)}{P(b)}
$$

Continuous Random Variables

- A multivalued variable V that takes values from a real interval $[\mathrm{a}, \mathrm{b}]$ is called a continuous random variable
- $\mathrm{P}(\mathrm{V}=\mathrm{v})=0$, we want to compute $\mathrm{P}(\mathrm{c} \leq \mathrm{V} \leq \mathrm{d})$
- V is described by a probability density function $\rho:[a, b] \rightarrow[0,1]$
- $\rho(\mathrm{v})$ is such that

$$
P(c \leq V \leq d)=\int_{c}^{d} \rho(v) d v
$$

Mixed Distribution

- We can have a conjunction of discrete and continuous variables
- Joint: if one of the variables is continuous, the joint is a density:
- X discrete, Y continuous: $\rho(\mathrm{x}, \mathrm{y})$
- Conditional joint:
- X discrete, Y continuous: $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$
- X discrete, Y continuous, Z discrete: $\rho(\mathrm{x}, \mathrm{y} \mid \mathrm{z})$

Properties of Continuous Random Variables

- The same as those of discrete random variables where summation is replaced by integration:
- Marginalization (sum rule)

$$
\rho(\boldsymbol{x})=\int \rho(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}
$$

- Conditional probability (product rule)

$$
\rho(x, y)=\rho(x \mid y) \rho(y)
$$

Domain Modeling

- We use a set of random variables to describe the domain of interest
- Example: home intrusion detection system, variables:
- Earthquake E, values $\mathrm{e}_{1}=$ no, $\mathrm{e}_{2}=$ moderate, $\mathrm{e}_{3}=$ severe
- Burglary B, values: $b_{1}=$ no, $b_{2}=y e s ~ t h r o u g h ~ d o o r, ~ b_{3}=y e s$ through window
- Alarm A, values $\mathrm{a}_{1}=n o, a_{2}=y e s$
- Neighbor call N, values $n_{1}=$ no, $n_{2}=y e s$

Inference

Inference

- We would like to answer the following questions
- What is the probability of a burglary through the door? (compute $\mathrm{P}\left(\mathrm{b}_{2}\right)$, belief computation)
- What is the probability of a burglary through the window given that the neighbor called? (compute $\mathrm{P}\left(\mathrm{b}_{2} \mid \mathrm{n}_{2}\right)$, belief updating)
- What is the probability of a burglary through the door given that there was a moderate earthquake and the neighbor called ? (compute $\mathrm{P}\left(\mathrm{b}_{2} \mid \mathrm{n}_{2}, \mathrm{e}_{2}\right)$, belief updating)
- What is the probability of a burglary through the door and of the alarm ringing given that there was a moderate earthquake and the neighbor called ? (compute $\mathrm{P}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} \mid\right.$ $\mathrm{n}_{2}, \mathrm{e}_{2}$), belief updating)
- What is the most likely value for burglary given that the neighbor called ($\operatorname{argmax}_{\mathrm{b}} \mathrm{P}\left(\mathrm{b} \mid \mathrm{n}_{2}\right)$, belief revision)

Types of Problems

- Diagnosis: P (cause|symptom)=?
- Prediction: P(symptom|cause)=?
- Classification: $\operatorname{argmax}_{\text {class }} \mathrm{P}$ (class|data)

Inference

- In general, we want to compute the probability $\mathrm{P}(\mathbf{q} \mid \mathbf{e})$
- of a query \mathbf{q} (assignment of values to a set of variables Q)
- given the evidence \mathbf{e} (assignment of values to a set of variables \mathbf{E})

Joint Probability Distribution

Inference

- If we know the jpd, we can answer all the possible queries:

$$
\begin{aligned}
P(\boldsymbol{q} \mid \boldsymbol{e}) & =\frac{P(\boldsymbol{q}, \boldsymbol{e})}{P(\boldsymbol{e})} \\
& =\frac{\sum_{x, X \in U \backslash \boldsymbol{Q} \backslash E} P(x, \boldsymbol{q}, \boldsymbol{e})}{\sum_{x, X \in U \backslash E} P(x, \boldsymbol{e})}
\end{aligned}
$$

Problem

- If we have n binary variables $(|\mathbf{U}|=n)$, knowing the jpd requires storing $\mathrm{O}\left(2^{\mathrm{n}}\right)$ different values.
- Even if had the space to store all the 2^{n} different values, computing $\mathrm{P}(\mathbf{q} \mid \mathbf{e})$ would require $\mathrm{O}\left(2^{\mathrm{n}}\right)$ operations
- Impractical for real world domains
- How to avoid the space and time problems? Use conditional independence assertions

Conditional Independence

- $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ vectors of multivalued variables
- \mathbf{X} and \mathbf{Y} are conditionally independent given \mathbf{Z} if

$$
P(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z})=P(\boldsymbol{x} \mid \boldsymbol{z}) \text { whenever } P(\boldsymbol{y}, \boldsymbol{z})>0
$$

- We write $\mathrm{I}<\mathbf{X}, \mathbf{Z}, \mathbf{Y}>$
- Special case: \mathbf{X} and \mathbf{Y} are independent if

$$
P(\boldsymbol{x} \mid \boldsymbol{y})=P(\boldsymbol{x}) \text { whenever } P(\boldsymbol{y})>0
$$

Chain Rule

- n random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- Let $\mathbf{U}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
- Joint event $\mathbf{u}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- Chain rule:

$$
\begin{aligned}
P(\boldsymbol{u}) & =P\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{n} \mid x_{n-1} \ldots, x_{1}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid x_{i-1} \ldots, x_{1}\right)
\end{aligned}
$$

Conditional Independence

- Π_{i} is a subset of $\left\{\mathrm{X}_{\mathrm{i}-1}, \ldots, \mathrm{X}_{1}\right\}$ such that
- X_{i} is conditionally independent of $\left\{\mathrm{X}_{\mathrm{i}-1}, \ldots, \mathrm{X}_{1}\right\} \backslash \boldsymbol{\Pi}_{\mathrm{i}}$ given $\boldsymbol{\Pi}_{\mathrm{i}}$

$$
P\left(x_{i} \mid x_{i-1} \ldots, x_{1}\right)=P\left(x_{i} \mid \boldsymbol{\pi}_{i}\right)
$$

- where $\boldsymbol{\pi}_{\mathrm{i}}$ is a set of values for $\boldsymbol{\Pi}_{\mathrm{i}}$
- Π_{i} parents of X_{i}

Conditional Independence

- Knowing Π_{i} for all i we could write

$$
\begin{aligned}
P(\boldsymbol{u}) & =P\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{n} \mid x_{n-1} \ldots, x_{1}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =P\left(x_{n} \mid \boldsymbol{\pi}_{n}\right) \ldots P\left(x_{2} \mid \boldsymbol{\pi}_{2}\right) P\left(x_{1} \mid \boldsymbol{\pi}_{1}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \boldsymbol{\pi}_{i}\right)
\end{aligned}
$$

Conditional Independence

- In order to compute $\mathrm{P}(\mathbf{u})$ we have to store

$$
P\left(x_{i} \mid \pi_{i}\right)
$$

- for all values x_{i} and $\boldsymbol{\pi}_{\mathrm{i}}$
- $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \boldsymbol{\pi}_{\mathrm{i}}\right)$: Conditional probability table
- If Π_{i} is much smaller than the set $\left\{X_{i-1}, \ldots, X_{1}\right\}$, then we have huge savings
- If k is the maximum number of parents of a variable, then storage is $\mathrm{O}\left(\mathrm{n} 2^{k}\right)$ instead of $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Graphical Representation

Example Network

- We can represent the conditional independence assertions using a directed graph network with a node per variable
- Π_{i} is the set of parents of X_{i}
- The graph is acyclic
- Variable order: E,B,A,N
- Independences

$$
\begin{aligned}
& P(e) \\
& P(b \mid e)=P(b) \\
& P(a \mid b, e)=P(a \mid b, e) \\
& P(n \mid a, b, e)=P(n \mid a)
\end{aligned}
$$

Bayesian Network

- A Bayesian network [Pearl 85] (BN) B is a couple (G, Θ) where
- G is a directed acyclic graph (DAG) (V,E) where
- V is a set of vertices $\left\{X_{1}, \ldots, X_{n}\right\}$
- E is a set of edges, i.e. A set of couples $\left(X_{i}, X_{j}\right)$
- $\left\langle X_{1}, \ldots, X_{n}>\right.$ is a topological sort of G, i.e. $\left(X_{i}, X_{j}\right) \in E \Rightarrow i<j$
$-\Theta$ is a set of conditional probability tables (cpts)

$$
\left\{\theta_{x_{i} \mid \pi_{i}} \mid i=1, \ldots, n, x_{i} \in X_{i}, \boldsymbol{\pi}_{i} \in \Pi_{i}\right\}
$$

- where Π_{i} is the set of parents of X_{i}

Bayesian Network

- $\mathrm{A} \mathrm{BN}(\mathrm{G}, \Theta)$ represents a jpd P iff
- each variable is independent of its predecessors given its parents in G

$$
P\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=P\left(x_{i} \mid \boldsymbol{\pi}_{i}\right)
$$

- $\theta_{\mathrm{xi} \mid \pi \mathrm{i}}=\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \boldsymbol{\pi}_{\mathrm{i}}\right)$ for all i and $\boldsymbol{\pi}_{\mathrm{i}}$
- In this case

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right) \\
& =\prod_{i=1}^{n} \theta_{x_{i} \mid \pi_{i}}
\end{aligned}
$$

How to Build a Bayesian Network

Building a Bayesian Network

- Usually the expert consider a variable X as a child of Y if Y is a direct cause of X
- Correlation and causality are related but are not the same thing
- See the book [Pearl 00]

Pathfinder system [Suermondt et al. 90]

Pathfinder system [Suermondt et al. 90]

- Diagnostic system for lymph-node diseases.
- 60 diseases and 100 symptoms and test-results.
- 14,000 probabilities
- Expert consulted to make net.
- 8 hours to determine variables.
- 35 hours for net topology.
- 40 hours for probability table values.

Inference with Bayesian Networks

Inference with Bayesian Networks

- With a Bayesian Network we save space, do we also save time?
- Do we have to use the formula

$$
P(\boldsymbol{q} \mid \boldsymbol{e})=\frac{\sum_{x, X \in \backslash \backslash \backslash \backslash E} P(x, \boldsymbol{q}, \boldsymbol{e})}{\sum_{x, X \in \backslash \backslash E} P(x, \boldsymbol{e})}
$$

- to compute $\mathrm{P}(\mathbf{q} \mid \mathbf{e})$?
- There are quicker algorithms
- Exact methods for polytrees
- Belief propagation
- Exact methods for general networks
- Junction tree
- Variable elimination
- Approximate methods for general networks:
- Stochastic sampling
- Loopy belief propagation
- Variational methods,

Complexity of Inference

- Exact inference with BN is \#P-complete
- \#P-complete: a special case of NP-complete problems
- The answer to a \#P-complete problem is the number of solutions to a NP-complete problem

Polytrees

A polytree is a directed acyclic graph in which no two nodes have more than one path between them.

A polytree

Not a polytree

- i.e. There are no cycles in the corresponding undirected graph

Belief Propagation [Pearl 88]

- To compute $\mathrm{P}(\mathrm{x} \mid \mathbf{e})$ write

$$
P(x \mid \boldsymbol{e})=\alpha \lambda(x) \pi(x)
$$

- where α is a normalizing constant and
$-\pi(x)$ represents the support to the assertion $\mathrm{X}=\mathrm{x}$ by the non-descendants of X
$-\lambda(\mathrm{x})$ represents the support to the assertion $\mathrm{X}=\mathrm{x}$ by the descendants of X

Belief Propagation

- Nodes exchange messages with their neighbors
- $\pi(\mathrm{x})$ and $\lambda(\mathrm{x})$ are computed from message received respectively from the parents and the children of X
- When a node is activated:
- It reads the incoming messages
- It updates $\pi(x)$ and $\lambda(x)$
- It updates $\mathrm{P}(\mathrm{x} \mid \mathbf{e})$
- It generates the new messages to be sent to their parents and children

Messages Received

- Node X,
- Parents U
- Children Y_{j}

General Networks

- Networks that have a cycle in their undirected version
- Two possibilities

- Conditioning
- Clustering

Conditioning

Join Trees

- Technique for clustering variables
- Steps:
- Obtain an undirected version of the network
- Perform a graph operation on it (triangulation)
- Each clique is a compound variable
- Add direction to the edges

Clustering

- Group together variables so that the resulting network is a polytree and use belief propagation

- Problem: how to find a good clustering?

Junction Tree

- The resulting inference algorithm [Lauritzen, Spiegelhalter 1988] is called
- Junction tree algorithm (jt), or
- Clique propagation
- Sampling:
- Generate N samples from BN
- Count: N_{e} : samples that satisfy $\mathbf{e}, \mathrm{N}_{\mathrm{qe}}$ samples that satisfy q, e
$-\mathrm{P}(\mathrm{q} \mid \mathrm{e})=\mathrm{N}_{\mathrm{qe}} / \mathrm{N}_{\mathrm{e}}$
- Loopy belief propagation:
- bp in networks with cycles
- Experiments have shown that it converges to good quality solutions
- Let X_{1}, \ldots, X_{n} be a topological sort of the variables
- For $\mathrm{i}=1$ to n
- Find parents, if any, of X_{i}. Call them $X_{p(i, 1)}, X_{p(i, 2)}, \ldots$ $\mathrm{X}_{\mathrm{p}(\mathrm{i}, \mathrm{p}(\mathrm{i})}$.
- Recall the values that those parents were randomly given: $\mathrm{X}_{\mathrm{p}(\mathrm{i}, 1)}, \mathrm{X}_{\mathrm{p}(\mathrm{i}, 2)}, \ldots \mathrm{X}_{\mathrm{p}(\mathrm{i}(\mathrm{p}(\mathrm{i}))}$.
- Look up in the cpt for:

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{p}(\mathrm{i}, 1)}=\mathrm{x}_{\mathrm{p}(\mathrm{i}, 1)}, \mathrm{X}_{\mathrm{p}(\mathrm{i}, 2)}=\mathrm{x}_{\mathrm{p}(\mathrm{i}, 2)} \ldots \mathrm{X}_{\mathrm{p}(\mathrm{i}, \mathrm{p}(\mathrm{i}))}=\mathrm{x}_{\mathrm{p}(\mathrm{i}, \mathrm{p}(\mathrm{i})}\right)
$$

- Randomly choose X_{i} according to this probability

Problems in Building BN

- Assessing conditional independence is not always easy for humans
- Usually done on the basis of causal information
- Assigning a number to each cpt entry is also difficult for humans

Problems in Building BN

- Often we do not have an expert but we are given a set of observations $\mathrm{D}=\left\{\mathbf{u}^{1}, \ldots \mathbf{u}^{\mathrm{N}}\right\}$
- $\mathbf{u}^{\mathbf{j}}$ is an assignment to all the variables $\mathbf{U}=\left\{X_{1}, \ldots, X_{n}\right\}$
- How to infer the parameters and/or the structure from D ?

Learning

Learning BN

- We want to find a BN over \mathbf{U} such that the probability of the data $\mathrm{P}(\mathrm{D})$ is maximized
- $\mathrm{P}(\mathrm{D})$ is also called the likelihood of the data
- We assume that all the samples are independent and identically distributed (iid) so

$$
P(D)=\prod_{i}^{N} P\left(\boldsymbol{u}^{i}\right)
$$

- Often the natural \log of $\mathrm{P}(\mathrm{D})(\log$ likelihood) is considered

$$
\log P(D)=\sum_{i}^{N} \log P\left(\boldsymbol{u}^{i}\right)
$$

- Tasks
- Computing the parameters given a fixed structure or
- finding the structure and the parameters
- Properties of data:
- complete data: in each data vectors \mathbf{u}^{j}, the values of all the variables are observed
- incomplete data

Parameter Learning from Complete Data

- Parameters to be learned

$$
\theta_{x \mid \boldsymbol{\pi}_{i}}=P\left(x_{i} \mid \boldsymbol{\pi}_{\boldsymbol{i}}\right)
$$

- for all $\mathrm{x}_{\mathrm{i}}, \boldsymbol{\pi}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$
- The values of the parameters that maximize the likelihood can be computed in closed form

Maximum Likelihood Parameters

- Given by relative frequency
- If N_{y} be the number of vectors of D where $\mathbf{Y}=\mathbf{y}$.

$$
\theta_{x \mid \pi_{i}}=\frac{N_{x_{i}, \pi_{i}}}{N_{\pi_{i}}}
$$

- Counting: for each i , for each value $\boldsymbol{\pi}_{\mathrm{i}}$ we must collect

$$
C_{\pi_{i}}=\left\langle N_{x_{i}^{\prime}, \pi_{i}}, \ldots, N_{x_{i}^{(i)}, \pi_{i}}\right\rangle
$$

- where $\mathrm{v}(\mathrm{i})$ is the number of values of X_{i}

Structure Learning from Complete Data

Structure Score

- Perform a local search in the space of possible structures
- HGC algorithm [Heckerman, Geiger, Chickering 95]:
- Start with a structure BestG' (possibly empty)
- Repeat
- BestG=BestG'
- Let $\operatorname{Ref}=\left\{\mathrm{G}^{\prime} \mid \mathrm{G}^{\prime}\right.$ is obtained from BestG' by adding, deleting or reversing an arc\}
- Let $B^{\prime} \operatorname{BestG}^{\prime}=\operatorname{argmax}_{\mathrm{G}^{\prime}}\left\{\operatorname{score}\left(\mathrm{G}^{\prime}\right) \mid \mathrm{G}^{\prime} \in \operatorname{Ref}\right\}$
- while score(BestG')-score(BestG)>0

$$
\begin{aligned}
\text { score }(G) & =P(D \mid G) \\
P(D \mid G) & =\int \rho(D, \Theta \mid G) d \Theta \\
& =\int P(D \mid \Theta, G) \rho(\Theta) d \Theta
\end{aligned}
$$

- where

$$
\begin{aligned}
& \rho(\Theta)=\prod_{i, \pi_{i}} \rho\left(\theta_{\pi_{i}}\right) \\
& \theta_{\pi_{i}}=\left\langle\theta_{x_{i}^{\prime} \mid \pi_{i}} \cdots, \theta_{x_{i}^{\prime i} \mid \pi_{i}}\right\rangle
\end{aligned}
$$

- and $\rho\left(\theta_{\pi i}\right)$ is the prior density of the vector $\theta_{\pi i}$

Prior Density of the Parameters

- A common choice for the form of the prior density is the Dirichlet probability density
- In this case $\rho\left(\theta_{\pi i}\right)$ is described by $v(i)$ parameters

$$
C_{\pi_{i}}^{\prime}=\left\langle N_{x_{i}^{\prime}, \pi_{i}}^{\prime}, \ldots, N_{x_{i}^{\prime(1), \pi_{i}}}^{\prime}\right\rangle
$$

- Prior counts: it is as if we had previously observed some data on which the counts are $\mathrm{N}_{\mathrm{x}, \mathrm{i}, \mathrm{i}}^{\prime}$

Structure Score

- If the priors for the parameters are Dirichlet, then the score is called BD (for Bayesian Dirichlet) and

$$
B D(G)=\sum_{i} B D_{i}(G)
$$

- where $\mathrm{BD}_{\mathrm{i}}(\mathrm{G})$ depends only on C_{i} and $\mathrm{C}_{\mathrm{i}}^{\prime}$, the counts for the family of X_{i}

$$
\begin{aligned}
& C_{i}=\left\langle C_{\pi_{i}^{\prime}}, \ldots, C_{\pi_{!}^{(i)}}\right\rangle \\
& C_{i}^{\prime}=\left\langle C^{\prime}{ }_{\pi_{i}^{\prime}}, \ldots, C_{\pi_{!}^{(i i v}}^{\prime}\right\rangle
\end{aligned}
$$

Structure Score

- $\mathrm{BD}(\mathrm{G})$ is decomposable:
- It can be computed independently for each family
- Each edge operation involves
- 1 family (addition, deletion) or
- 2 families (reversal)
- $\mathrm{BD}\left(\mathrm{G}^{\prime}\right)$ can be quickly computed from BD (BestG) by changing only the score of the affected families

Parameter Learning from Incomplete Data

- The maximum likelihood parameters cannot be computed in closed form
- An iterative algorithm is necessary: the EM algorithm
- Finds a (possibly) local maximum of the likelihood

EM Algorithm

- Initialize the parameters at random Θ
- Repeat
- Expectation step:
- compute the probability of each value of the missing attributes using (G, Θ) and inference
- Obtain a new dataset D^{\prime} by completing D according to the probabilities computed above
- Compute Θ by maximum likelihood on D^{\prime}
- Relative frequency

Structure Learning from Incomplete Data

- There is no decomposable score
- HGC would not be efficient
- Structural EM:
- Start with a structure BestG' (possibly empty)
- Repeat
- BestG=BestG'
- Compute the parameters of BestG with EM
- Optimize a lower bound of the likelihood of the observed data
- Let BestG' the optimum
- Until no improvement

Applications of BN

- Monitoring of emergency care patients
- Model of barley crops yield.
- Diagnosis of carpal tunnel syndrome
- Insulin dose adjustment (DBN) in diabetes
- Predicting hails in northern Colorado.
- Evaluating insurance applications

Applications of BN

- Deciding on the amount of fungicides to be used against attack of mildew in wheat.
- Assisting experts of electromyography.
- Pedigree of breeding pigs.
- Modeling the biological processes of a water purification plant.
- Printer troubleshooting (Microsoft Windows)

Printer Troubleshooting (Windows 95)

Applications

- Office Assistant in MS Office ("smiley face")
- Bayesian network based free-text help facility
- help based on past experience (keyboard/mouse use) and task user is doing currently

Markov Networks (MN)

- Approach alternative to BN
- Undirected graph
- Conditional independence represented by graph separation
- Probability distribution as the product of a set of potentials (functions of a subset of variables) divided by a normalization constant
- One potential per clique

Markov Network

- Inference:
- Algorithms similar to those for BN (bp, ct, ve, ss..)
- Same complexity
- MN can represent some independences that BN can not represent and vice versa
- Advantage: we do not have to avoid cycles
- Disadavantage: MN parameters are more difficult to interpret

Combination of Logic and Probability

- BN are not able to deal with domains containing multiple entities connected by complex relationships
- Logic is not able to represent uncertainty efficiently
- Combination: active research area with many different proposals
- The most common approach is to design a new language and then provide a translation into BN or MN for defining the semantics, performing inference and learning

Some Logical-Probabilitstic Languages

- Probabilistic Relational Models $\rightarrow \mathrm{BN}$
- Markov Logic Network \rightarrow MN
- Bayesian Logic Programs \rightarrow BN
- Logic Programs with Annotated Disjunctions \rightarrow BN
- Relational Markov Networks \rightarrow MN
- $\mathrm{CLP}(\mathrm{BN}) \rightarrow \mathrm{BN}$

CLP(BN) [Costa et al 03]

- Based on Prolog
- Variables in a $\operatorname{CLP}(\mathrm{BN})$ program can be random
- Their values, parents and CPTs are defined with the program
- To answer a query with uninstantiated random variables, CLP(BN) builds a BN and performs inference
- The answer will be a probability distribution for the variables

Example

```
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with
    p([a,b,c,d],
%h h h m h l m h m m m l l h l m l l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
    0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
    0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
    0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],
[Int,Dif]))
}.
```

.

Inference

Availability

- $\operatorname{CLP}(B N)$ is included in Yap prolog
- http://www.dcc.fc.up.pt/~vsc/Yap/
- It can use either junction tree or variable elimination for inference

Logic Programs with Annotated Disjunction

- [Vennekens et al. 04]
- Minimal extension of logic programming to allow the representation of uncertainy
- Clauses of the form

$$
\mathrm{h}_{1}: \alpha_{1} ; \ldots ; \mathrm{h}_{\mathrm{n}}: \alpha_{\mathrm{n}}:-\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{m}}
$$

- where h_{i} are atoms, b_{i} are literals and α_{1} are probabilities such that

$$
\sum_{i=1}^{n} \alpha_{i} \leq 1
$$

Semantics

- Each clause can be seen as an experiment: if $\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{m}}$ is true then h_{i} is true with probability α_{i} or no h_{i} is true with probability $1-\Sigma_{i} \alpha_{i}$
- Each ground atom is seen as random variable with values true and false
- We want to assign probabilities to queries (conjunctions of ground atoms), possibly conditioned on some evidence

Semantics

- Given an LPAD T, generate its grounding T'
- An instance of T is a normal logic program obtained by selecting one head from each clause of T^{\prime}
- The probability of an instance is obtained by multiplying the probability of each head selected
- The probability of a query Q is given by the sum of the probabilities of the instances that have Q as consequence

Example

```
heads(Coin):0.5 ; tails(Coin):0.5 :-
    toss(Coin), \+ biased(Coin).
heads(Coin):0.6 ; tails(Coin):0.4 :-
    toss(Coin), biased(Coin).
biased(Coin):0.1 ; fair(Coin):0.9.
toss(coin).
P(heads(coin))=0.51
P(heads(coin)|biased(coin))=0.6
```


Conversion to Bayesian Networks

Conversion to Bayesian Networks

- ch_{r} depends on the variables that appear in the body of r
- CPT:
- $\mathrm{P}\left(\mathrm{ch}_{\mathrm{r}}=\mathrm{h}_{\mathrm{i}}\right)=\alpha_{\mathrm{i}}, \mathrm{P}\left(\mathrm{ch}_{\mathrm{r}}=n u l l\right)=1-\Sigma_{\mathrm{i}} \alpha_{\mathrm{i}}$ if the body is true
- $\mathrm{P}\left(\mathrm{ch}_{\mathrm{r}}=\right.$ null $)=1$ if the body is false

Inference with LPADs

- Convert to BN and use BN inference
- Problem: the grounding may be very large
- Compute all the possible derivations and compute the probability that one of these derivations is possible [Riguzzi 07]
- Suite of reasoning tools for LPADs: cplint
http://www.ing.unife.it/software/cplint/
- It is included in the CVS version of Yap

Learning LPADs

- Data D: set of interpretations (i.e. sets of ground atoms),
- Task: find the parameters of an LPAD that maximize the likelihood of D :
- Task: find the parameters and the structure of an LPAD that maximize the likelihood of D

Learning Parameters

- ME-compliant LPAD: every couple of ground clauses that share an atom in the head have mutually exclusive bodies
- If an LPAD is ME-compliant then the parameters can be computed in closed form as a ratio of counts [Riguzzi 04]

$$
\alpha_{i}=P\left(h_{i} \mid b o d y\right)
$$

- Otherwise [Blookeel, Meert 06]
- Convert the LPAD to a BN
- Use EM since the ch_{r} variables are unobserved in D

Learning the Structure

- If the LPAD is ME-compliant then the structure can be learned by solving a mixed integer programming problem
- ALLPAD system [Riguzzi 08]
- Otherwise [Blockeel, Meert, 07]
- Use Structural EM to learn a BN
- Convert to LPAD

BN Software

- List of BN software
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html\
- BNT: inference and learning, Matlab, open source
- MSBNx: inference, by Microsoft, free closed source
- OpenBayes: inference and learning, Python, open source
- BNJ: inference and learning, Java, open source
- Weka: learning, Java, open source

Resources

- Probabilistic Reasoning in Intelligent Systems by Judea Pearl. Morgan Kaufmann: 1998.
- Probabilistic Reasoning in Expert Systems by Richard Neapolitan. Wiley: 1990.
- List of BN Models and Datasets http://www.cs.huji.ac.i1/labs/compbio/Repository/

Acknowledgments

- Some slides from
- Andrew Moore's tutorials http://www.autonlab.org/tutorials/
- Irina Rish and Moninder Singh's tutorial http://www.research.ibm.com/people/r/rish/

References

- [Pearl 85] Pearl, J., "Bayesian Networks: a Model of Self-Activated Memory for Evidential Reasoning," UCLA CS Technical Report 850021, Proceedings, Cognitive Science Society, UC Irvine, 329-334, August 15-17, 1985.
- [Pearl 00] Pearl, J., Causality: Models, Reasoning, and Inference, Cambridge University Press, 2000
- [Suermondt et al. 90] Henri Jacques Suermondt, Gregory F. Cooper, David Heckerman, "A combination of cutset conditioning with clique-tree propagation in the Pathfinder system", UAI ' 90 .

References

- [Vennekens et al. 04] J.Vennekens, S. Verbaeten and M. Bruynooghe, "Logic programs with annotated disjunctions", ICLP04
- [Riguzzi 07] F. Riguzzi. "A top down interpreter for lpad and cp-logic". In Proceedings of the 10th Congress of the Italian Association for Artificial Intelligence, number 4733 in Lecture Notes in Artificial Intelligence, Springer, 2007.
- [Riguzzi 04] F. Riguzzi. "Learning logic programs with annotated disjunctions", ILP04.

References

- [Blookeel, Meert 06] H. Blockeel, W. Meert:
"Towards Learning Non-recursive LPADs by Transforming Them into Bayesian Networks", ILP 2006:
- [Riguzzi 08] F. Riguzzi, "ALLPAD: Approximate learning of logic programs with annotated disjunctions". Machine Learning, 70(2-3), 2008.
- [Blookeel, Meert 07] W. Meert, J. Struyf, H. Blockeel, "Learning Ground CP-logic Theories by means of Bayesian Network Techniques", MRDM07

