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Summary

Probability theory

Conditional independence

Definition of Bayesian network

Inference

Learning

Logic and probability

Uncertainty

* Reasoning requires simplifications:
- Birds fly
- Smoke suggests fire

* Treatment of exceptions

* How to reason from uncertain knowledge?

How to Perform Inference?

* Use non-numerical techniques
- Logicist: non monotonic logic

* Assign to each proposition a numerical measure of

uncertainty
- Neo-probabilist: use probability theory
- Neo-calculist: use other theories:

* fuzzy logic

* certainty factors

* Dempster-Shafer




Probabllity Theory

* A: Proposition,
- Ex: A=The coin will land heads
* P(A): probability of A
* Frequentist approach: probability as relative
frequency
- Repeated random experiments
- P(A) is the fraction of experiments in which A ige

* Bayesian approach: probability as a degree oftbelie
» Example: B=burglary tonight
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Axioms of Probability Theory

0<P(A)<1
P (Sure Propositiop=1

P(AvB)=P(A)+P(B)
if AandBare mutually exclusive

Probability Rules

* Any event A can be written as the or of two disjoin
events (A and B) and (A and -B)

mar ginalization/
P(A)=P(A,B)+P(A,-B) sumgrule

* Where P(A,B)=P(AB) is called thgoint
probability of A and B

e In general, if Bi=1,2,...,n is a set of exhaustive and
mutually exclusive propositions
P(A)=2 P(A,B)

* Moreover P(A)+P(-A)=1 ]

Conditional Probabilities

* P(A|B)= belief of A given that | know B
* Relation to P(A,B)

P(A,B)=P(AB)P(B) productrule




Bayes Theorem

Relationship between P(A|B) and P(B|A)

BIA)P(A)

p(AB)="! o

P(A): prior probability
P(A|B): posterior probability (after learning B)

Conditional Independence

* If P(A|B)=P(A) we say that A and B are independent

* If P(A|B,C)=P(A|C) we say that A and B are
conditionally independent given C
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Chain Rule

nevents E....E

« Joint event (E...,E)

P(E,...,E,)=P(E|E,.;...,E))P(E,_.,...,E})
P(E,....,E,.;)=P(E,_1|Eq_5....,E;)P(E,_5,..., E))
e Chain rule:

P(Ely...,En)=P(En|En_1... , El)...P(E2|E1)P(E1)=
[1_ P(EIE_.,...E) 3

Multivalued Hypothesis

* Propositions can be seen as binary variables, i.e.
variables taking values true or false

- Burglary B: true or false
* Generalization: multivalued variables
- Semaphore S, values: green, yellow, red
- Propositions are a special case with two values
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Discrete Random Variables

e Variable V, values v=1,...,n

* Vs also called aiscreterandom variable

« V=v_is a proposition

 Propositions V=vi=1,...,n exhaustive and mutually
exclusive

« P(v) stands for P(V=y

o Vis described by the set {PJ\=1,...,n}, the
probability distribution of V, indicated with P(V)
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Notation

* We indicate with v a generic value of V
e Set or vector of variable¥ valuesv
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Marginalization

e Multivalued variables A and B
. bi I=1,...,n values of B

P(a)=2, P(a,h)
* Or
P(a)=2.,P(a,b)
* In general
p(x)zzyp(x,y) sumrule
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Conditional Probabilities

* P(a|b)= belief of A=a given that know B=b
* Relation to P(a,b)

P(a,b)=P(alb)P(b) productrule

P(alb)= Pé?l;)b)
* Bayes theorem
P (alb)= P(bFI)a:)br)J(a>
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Continuous Random Variables

* A multivalued variable V that takes values from a
real interval [a,b] is called @ontinuous random
variable

e P(V=v)=0, we want to compute R{¢<d)

* Vis described by arobability density function
p: [a,b}-[0,1]
* p(V) is such that

P(c<V=d)=]" p(v)dv
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Properties of Continuous Random Variables

* The same as those of discrete random variables
where summation is replaced by integration:

* Marginalization (sum rule)
p(x)=] p(x,y)dy
* Conditional probability (product rule)
p(X,y)=p(x]y)p(y)
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Mixed Distribution

* We can have a conjunction of discrete and
continuous variables

* Joint: if one of the variables is continuous, thiat
is a density:

- X discrete, Y continuougi(x,y)
* Conditional joint:
- X discrete, Y continuous: P(x|y)
- X discrete, Y continuous, Z discretgx,y|z)
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Domain Modeling

e \WWe use a set of random variables to describe the
domain of interest

* Example: home intrusion detection system,
variables:

- Earthquake E, values=#0, g=moderate, gsevere

- Burglary B, values: [=no, h=yes through door, byes
through window

- Alarm A, values gno, a=yes

- Neighbor call N, values sno, n=yes
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Inference

* We would like to answer the following questions

- What is the probability of a burglary through theod?
(compute P(h), belief computation)

- What is the probability of a burglary through thegow
given that the neighbor called ? (compute,Ja(lh belief

updating)
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Inference

- What is the probability of a burglary through theod
given that there was a moderate earthquake and the
neighbor called ? (compute Eifi,e,), belief updating )

- What is the probability of a burglary through theod
and of the alarm ringing given that there was a enaig
earthquake and the neighbor called ? (computgiH(a

n,e,), belief updating)

- What is the most likely value for burglary givemathhe
neighbor called (argma¥®(ldn,), belief revision)
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Types of Problems

* Diagnosis: P(cause|symptom)="
* Prediction: P(symptom|cause)="
» Classification: argmax_P(class|data)
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Inference

* In general, we want to compute the probability
P@le)
- of a queryg (assignment of values to a set of variables

Q)

- given the evidence (assignment of values to a set of
variablesE)
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Joint Probabillity Distribution

* Thejoint probability distribution (jpd) of a set of
variablesU is given by R{) for all valuesu

* For our example
- U={E,B,AN}

- We have the jpd if we know &=P(e,b,a,n) for all the
possible values e, b, a, n.
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Inference

* If we know the jpd, we can answer all the possible
gueries:

P(gle)=pror

Zx XeU\Q\E X q e)
2

X, XEU\E X e>

26

Problem

* If we have n binary variabledJ|Fn), knowing the
jpd requires storing O(Rdifferent values.

* Even if had the space to store all thaiZerent
values, computing Ble) would require O(9
operations

* Impractical for real world domains

* How to avoid the space and time problems? Use
conditional independence assertions
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Conditional Independence

e X,Y, Z vectors of multivalued variables
* X andY areconditionally independent givenZ if

P(x|y,z)=P(x|z)wheneveP(y,z)>0

* We write I<X,Z,Y>
* Special caseX andY are independent if

P(x|y)=P(x)wheneveP(y)>0
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Chain Rule

« nrandom variables X..,X
o LetU={X ..., X}
e Joint event=(x,...,X)

e Chain rule:
P(U)=P(X1,---!Xn)
=P (X Xp_geee 0 Xg) ... P(Xg| X)) P(Xy)

_H P |X| 1 )
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Conditional Independence

o IL is a subset of {X,...,X } such that

o X. is conditionally independent of {X...,X N1
givenIL
(XX _1-- 0 %) =P (x|}
e Wherer is a set of values fdi,

o IL parents of X
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Conditional Independence

e KnowingII for all i we could write

P(u )=P<X1 Xy)
P (X %or.. . X0)... P (XX P(%,)
=P(X,|1,)... P(Xy]m,) P(Xy|7,)
=Hin:1 P(x|m;)
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Conditional Independence

In order to compute B we have to store

P (x;|m;)

for all values xandm.

P(x [r): Conditional probability table

If IT. is much smaller than the set {X..,X}, then
we have huge savings

* If k is the maximum number of parents of a variable
then storage is O(KRinstead of O(9

32




Graphical Representation

* We can represent the conditional independence
assertions using a directed graph network with a
node per variable

o IL is the set of parents of X

* The graph is acyclic
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Example Network

e Variable order: E,B,A,N

* Independences
P(e)
P (ble)=P(b)
P(alb,e)=P(alb,e)
P(

nla,b,e=P(nla) °
0
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Bayesian Network

* A Bayesian network [Pearl 85] (BN) B is a couple
(G,®) where

- G is a directed acyclic graph (DAG) (V,E) where
 Vis a set of vertices {X...,X }
e E is a set of edges, i.e. A set of couplels>(‘.)(
* <X,,...,X>is a topological sort of G, i.e. I(,X]A)DE:>i<j
- O is a set of conditional probability tables (cpts)
(0,.[iI=1,....,n,xEX;,m eIl
- wherell is the set of parents of X
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Bayesian Network

* ABN (G,©®) represents a jpd P iff

- each variable is independent of its predecessuendgis
parents in G
P(Xi|Xi_y-.., X )=P(X|m;)

- 0,,=P(xlm) for all i and=,

¢ In this case
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How to Build a Bayesian Network

* Choose an ordering, .. X, for the variables
e Fori=1ton:
- Add X, node to the network

- Setll to be a minimal subset ok{...Xi.} such that we

have conditional independence afaxd all other
members of X....X..} given IT;

- Assign a value to P(x) for all the values of xandn.
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Building a Bayesian Network

* Usually the expert consider a variable X as a child
of Yif Y is adirect cause of X

* Correlation and causality are related butraoethe
same thing

- See the book [Pearl 00]
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Pathfinder system [Suermondt et al. 90]

* Diagnostic system for lymph-node diseases.

* 60 diseases and 100 symptoms and test-results.
* 14,000 probabilities

* Expert consulted to make net.

* 8 hours to determine variables.

* 35 hours for net topology.

* 40 hours for probability table values.
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Pathfinder system [Suermondt et al. 90]

* Pathfinder is now outperforming the world experts
in diagnosis.

* Being extended to several dozen other medical
domains.
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Inference with Bayesian Networks

» With a Bayesian Network we save space, do we also

save time?
e Do we have to use the formula

P( 1 1 )
P(Q|e)=§X-X€V\Q\;(X Xe)q ©

X, XeV\E
* to compute Ry{le)?
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Inference with Bayesian Networks

* There are quicker algorithms

- Exact methods for polytrees
* Belief propagation
- Exact methods for general networks
* Junction tree
* Variable elimination
- Approximate methods for general networks:
* Stochastic sampling
* Loopy belief propagation
* Variational methods,
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Complexity of Inference

* Exact inference with BN is #P-complete

* #P-complete: a special case of NP-complete
problems

- The answer to a #P-complete problem is the numiber o

solutions to a NP-complete problem
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Polytrees

A polytree is a directed acyclic graph in whichtwo
nodes have more than one path between them.

A polytree Not a polytree

* i.e. There are no cycles in the corresponding
undirected graph

44




Belief Propagation [Pearl 88]

* To compute P(®) write
P(x|e)=aA(X)m(X)
* whereo is a normalizing constant and

- n(X) represents the support to the assertion X=thby
non-descendants of X

- MX) represents the support to the assertion X=thby
descendants of X
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Belief Propagation

* Nodes exchange messages with their neighbors

* 1(X) andi(x) are computed from message received
respectively from the parents and the children of X

* When a node is activated:
- It reads the incoming messages
- It updatest(x) andi(x)
- It updates P(x)

- It generates the new messages to be sent to Hreints
and children
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Messages Received

* Node X,
o Parents U

e Children \q

a7

General Networks

¢ Networks that have Q
a cycle in their @.@
undirected version Q

* Two possibilities

- Conditioning
- Clustering g
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Conditioning

Setjo 0 Setto1l

*usl *usl
g E ‘E’. "”5‘ E E E" . ’5" E
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Clustering

* Group together variables so that the resulting
network is a polytree and use belief propagation

* Problem: how to find a good clustering?
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Join Trees

* Technique for clustering variables

* Steps:
- Obtain an undirected version of the network
- Perform a graph operation on it (triangulation)
- Each clique is a compound variable
- Add direction to the edges
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Junction Tree

* The resulting inference algorithm [Lauritzen,
Spiegelhalter 1988] is called

- Junction tree algorithm (jt), or
- Clique propagation
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Approximate Methods

e Sampling:
- Generate N samples from BN
- Count: N: samples that satisy N samples that satisfy
g.e
- P(qB)=N_/N,
* Loopy belief propagation:
- bp in networks with cycles

- Experiments have shown that it converges to good
guality solutions
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Sampling

e Let X,,...,.X be atopological sort of the variables

e Fori=1lton

- Find parents, if any, of XCall them X 1), Xy2) -
X0

- Recall the values that those parents were randomly
GIVEN. X1 Xoii2)r -+ -Xp(ip()-

- Look up in the cpt for:

POGEX | X0, %66, Xp6,27%p.2) - X pt.pi)=Xp(i.00))
- Randomly choose, according to this probability
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Problems in Building BN

* Assessing conditional independence is not always
easy for humans

* Usually done on the basis of causal information

* Assigning a number to each cpt entry is also
difficult for humans
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Problems in Building BN

* Often we do not have an expert but we are given a
set of observations D#f,...uN}

U is an assignment to all the variablds{X ,...,X }

* How to infer the parameters and/or the structure
from D?
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Learning

* We want to find a BN ovad such that the
probability of the data P(D) is maximized

* P(D) is also called thiekelinood of the data

* We assume that all the samplesiagependent
and identically distribhjted (iid) so
P(D)=]], P
* Often the natural log of P(D)ag likelihood) is
considered

log P(D)=ZiN logP(u')

57

Learning BN

* Tasks
- Computing the parameters given a fixed structure or
- finding the structure and the parameters

* Properties of data:

- complete data: in each data vectarshe values of all
the variables are observed

- incomplete data
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Parameter Learning from Complete Data

e Parameters to be learned
9Xi|rri: P(Xi|7Ti>
o forall x, =, i=1,...,n

* The values of the parameters that maximize the
likelihood can be computed in closed form
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Maximum Likelihood Parameters

* Given by relative frequency

« If N, be the number of vectors of D whefey.
N

X, T

0., =
x|, N
« Counting: for each i, for each value we must
collect
C"i=< N X,l,Tri yeeoy NXY“),TI,>

« where V(i) is the number of values of X
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Structure Learning from Complete Data

* Perform a local search in the space of possible
structures

* HGC algorithm [Heckerman, Geiger, Chickering
95].
- Start with a structure BestG' (possibly empty)
- Repeat
* BestG=BestG'

* Let Ref={G'|G' is obtained from BestG' by addingleding or
reversing an arc}

* Let BestG'=argmax{score(G")|GURef}
- while score(BestG')-score(BestG)>0 61

Structure Score

score(G)=P(D|G)

P(DIG)=J p(D,0|G)d®
=[ P(D|®,G)p(0)d6

* where

 andp(0_) is the prior density of the vector
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Prior Density of the Parameters

* A common choice for the form of the prior density
is theDirichlet probability density

o In this case(0 ) is described by v(i) parameters

* Prior counts: it is as if we had previously obsedrve
some data on which the counts arg N*
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Structure Score

* |f the priors for the parameters are Dirichlet,rthe
the score is called BD (for Bayesian Dirichlet) and

BD(G)=2,, BD,(G)

« where BD(G) depends only on @nd C; the counts
for the family of X

Ci =<C‘rr|1 yoeoo ,C_n_ip(i)>
C li :<C I_n_i1,... ,C I_n_ip(i)>

64




Structure Score

* BD(G) isdecomposable:
- It can be computed independently for each family
* Each edge operation involves

- 1 family (addition, deletion) or
- 2 families (reversal)

* BD(G') can be quickly computed from BD(BestG)
by changing only the score of the affected families
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Parameter Learning from Incomplete Data

* The maximum likelihood parameters cannot be
computed in closed form

* An iterative algorithm is necessary: the EM
algorithm

* Finds a (possibly) local maximum of the likelihood
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EM Algorithm

* |nitialize the parameters at rand@n
* Repeat

- Expectation step:

* compute the probability of each value of the migsttributes
using (G@) and inference

* Obtain a new dataset D' by completing D accordnté
probabilities computed above

- Compute® by maximum likelihood on D'
* Relative frequency
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Structure Learning from Incomplete Data

* There is no decomposable score
* HGC would not be efficient

e Structural EM:

- Start with a structure BestG' (possibly empty)
- Repeat
* BestG=BestG'
* Compute the parameters of BestG with EM
* Optimize a lower bound of the likelihood of the ebsed data
* Let BestG' the optimum

- Until no improvement o




Applications of BN

Monitoring of emergency care patients

Model of barley crops yield.
» Diagnosis of carpal tunnel syndrome

Insulin dose adjustment (DBN) in diabetes

Predicting hails in northern Colorado.

Evaluating insurance applications
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Applications of BN

* Deciding on the amount of fungicides to be used
against attack of mildew in wheat.

* Assisting experts of electromyography.
* Pedigree of breeding pigs.

* Modeling the biological processes of a water
purification plant.

* Printer troubleshooting (Microsoft Windows)
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Printer Troubleshooting (Windows 95)

d
Tocal Disk Qata Ok 0D '
Space Adequate
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Applications

» Office Assistant in MS Office (“smiley face”)

- Bayesian network based free-text help facility

- help based on past experience (keyboard/mouseande)
task user is doing currently
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Markov Networks (MN)

* Approach alternative to BN
* Undirected graph

» Conditional independence represented by graph
separation

* Probability distribution as the product of a set of
potentials (functions of a subset of variables)
divided by a normalization constant

* One potential per clique
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Markov Network

Inference:
- Algorithms similar to those for BN (bp, ct, ve,.}s.
- Same complexity

MN can represent some independences that BN can
not represent and vice versa

Advantage: we do not have to avoid cycles

Disadavantage: MN parameters are more difficult to
interpret
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Combination of Logic and Probability

* BN are not able to deal with domains containing
multiple entities connected by complex relationship

* Logic is not able to represent uncertainty effidien

* Combination: active research area with many
different proposals

* The most common approach is to design a new
language and then provide a translation into BN or
MN for defining the semantics, performing
inference and learning
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Some Logical-Probabilitstic Languages

Probabilistic Relational ModelssBN
Markov Logic Network—MN

Bayesian Logic ProgramsBN

Logic Programs with Annotated Disjunctich8N
Relational Markov Networks>MN

CLP(BN) —BN
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CLP(BN) [Costa et al 03]

* Based on Prolog
» Variables in a CLP(BN) program can be random

* Their values, parents and CPTs are defined with the
program

* To answer a query with uninstantiated random
variables, CLP(BN) builds a BN and performs
inference

* The answer will be a probability distribution fiwet
variables
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Example

regi stration_grade(Key, G ade):-
regi stration(Key, CKey, SKey),
course_difficulty(CKey, Df),
student _intelligence(SKey, Int),
{ Grade = grade(Key) with

p([a, b,c,d],

% h h m hl mh mm ml Il h I m I |
[0.20,0.70,0.85,0.10,0. 20, 0.50,0.01, 0.05,0. 10,
0. 60, 0. 25,0. 12, 0. 30, 0.60,0.35,0.04, 0. 15, 0. 40,
0. 15, 0. 04, 0. 02, 0. 40, 0. 15,0. 12, 0. 50, 0. 60, 0. 40,
0. 05, 0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ]

[Int,Dif]))
7.

78

Inference

?- [school _32].
?- registration_grade(r0,Q.
p( G=a) =0. 4115,
p( G=b) =0. 356,
p( G=c) =0. 16575,
p( G=d) =0. 06675 ?
?- registration_grade(r0,Q,
student _intel |l igence(sO0, h).
p( G=a) =0. 6125,
p( G=b) =0. 305,
p( G=c) =0. 0625,
p(G=d)=0.02 ?
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Availability

* CLP(BN) is included in Yap prolog
* http://www.dcc.fc.up.pt/~vsc/Yap/

* |t can use either junction tree or variable elinioa
for inference
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Logic Programs with Annotated Disjunction

* [Vennekens et al. 04]

* Minimal extension of logic programming to allow
the representation of uncertainy

e Clauses of the form
hlzal; e hﬁan - bl,...bm
e Where hare atoms,ikare literals andL1 are
probabilities such that

Zi:l <1
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Semantics

« Each clause can be seen as an experiment..ibb
is true then his true with probabilitys, or no his
true with probability 1x.0.

* Each ground atom is seen as random variable with
values true and false

* We want to assign probabilities to queries
(conjunctions of ground atoms), possibly
conditioned on some evidence
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Semantics

* Given an LPAD T, generate its grounding T'

* An instance of T is a normal logic program obtained
by selecting one head from each clause of T

* The probability of an instance is obtained by
multiplying the probability of each head selected

* The probability of a query Q is given by the sum of
the probabilities of the instances that have Q as
consequence
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Example

heads(Coin): 0.5 ; tails(Coin):0.5 :-
toss(Coin), \+ biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin), biased(Coin).

bi ased(Coin):0.1 ; fair(Coin):0.09.
t oss(coin).

P(heads(coin))=0.51
P(heads(coin)|biased(coin))=0.6
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Conversion to Bayesian Networks

e An LPAD can be converted to a BN that has

- One boolean variable per ground atom
- One variable clper ground clause r, with the ground
atoms in the head plus null as values
* The dependencies are defined as follows:

- Ground atom a depends on all the clause variabégs t
have a in the head

- The CPT assign probability 1 to a if at least oarept is
equal to a and 0 otherwise

85

Conversion to Bayesian Networks

« ch depends on the variables that appear in the body
of r

* CPT:
- P(ch=h)=a,, P(ch=null)=1-2 0. if the body is true
- P(ch=null)=1 if the body is false
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Inference with LPADs

e Convert to BN and use BN inference
- Problem: the grounding may be very large

* Compute all the possible derivations and compute
the probability that one of these derivations is
possible [Riguzzi 07]

* Suite of reasoning tools for LPADs: cplint
http://www.ing.unife.it/software/cplint/
* |tis included in the CVS version of Yap
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Learning LPADs

* Data D: set of interpretations (i.e. sets of ground
atoms),

* Task: find the parameters of an LPAD that
maximize the likelihood of D:

* Task: find the parameters and the structure of an
LPAD that maximize the likelihood of D
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Learning Parameters

* ME-compliant LPAD: every couple of ground
clauses that share an atom in the head have mutuall
exclusive bodies

* If an LPAD is ME-compliant then the parameters
can be computed in closed form as a ratio of counts
[Riguzzi 04]

o;=P (hbody)
* Otherwise [Blookeel, Meert 06]

- Convert the LPAD to a BN
- Use EM since the clvariables are unobserved in D

Learning the Structure

* If the LPAD is ME-compliant then the structure can
be learned by solving a mixed integer programming
problem

- ALLPAD system [Riguzzi 08]
* Otherwise [Blockeel, Meert, 07]

- Use Structural EM to learn a BN
- Convert to LPAD
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BN Software

* List of BN software
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html\

* BNT: inference and learning, Matlab, open source
* MSBNXx: inference, by Microsoft, free closed source

* OpenBayes: inference and learning, Python, open
source

* BNJ: inference and learning, Java, open source
* Weka: learning, Java, open source
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Resources

* Probabilistic Reasoning in Intelligent Systems by
Judea Pearl. Morgan Kaufmann: 1998.

* Probabilistic Reasoning in Expert Systems by
Richard Neapolitan. Wiley: 1990.

* List of BN Models and Datasets
http://www.cs.huji.ac.il/labs/compbio/Repository/
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e Some slides from

- Andrew Moore's tutorials
http://www.autonlab.org/tutorials/

- Irina Rish and Moninder Singh's tutorial
http://www.research.ibm.com/people/r/rish/
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