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Predictive ILP

® Aim:
s classifying instances of the domain, i.e.
» predicting the class
# Two settings:
s Learning from entailment
» Learning from interpretations
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Learning from Entailment

» Given
s A set of positive example E*
s A set of negative examples E~
s A background knowledge B
» A space of possible programs H
# Find a program P € H such that
s Vet € Et, PUB E ¢ (completeness)
s Ve~ € E7, PUB £ e~ (consistency)
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Targeted Mailing

Mailing Example

Category = clothing
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customer article 9o POS|t|Ve examp|eS E+ = {Tespond(cmn)}
Name Age Sex Address Resp Name Category Size Price .
o |35 m - o P P pr— # Negative examples
% : " - ket 2| coting |1 150 E~ = {respond(john), respond(mary), respond(steve)}
seve | 31 m v ro oz | Jowder |7 =0 # Background B = facts for relations customer,
transaction and article
transaftion Customer(jOhn, 357 m, CCL) .
Name | Ade | Quantty customer(mary, 25, f, ca).
john bike_1 2
- PREEE customer(ann, 29, f,wa). .. .
seve bket | 1 transaction(john, bike 1,2).
— T transaction(ann, jacket 2,1)....
article(bike 1, sport,l,1000).
article(jacket 2, clothing,l,150). ...
Mailing Example Father Example
# Space of programs H: programs containing clauses # Learning the definition of father/2
Wlth ® B = {parent(john, mary), male(john),
» in the head respond(Customer) parent(david, steve), male(david),
s in the body a conjunction of literals from the set parent(kathy, ellen), female(kathy)}
{customer(Customer, Age, Sex, Address) n : .

’ P ' ® Et={fath h ther(david, st
transaction(Customer, Article, Quantity), {father(john, mary), father(david, steve)}
article(Article, Category, Price), ® £~ ={father(kathy,ellen), father(john, steve)}
Age = constant, Sex = constant, ... .} »# Language bias: clauses of the form father(X,Y) : —a

Possible solution with

respond(Customer) «— a € {parent(X,Y), parent(Y, X),
transaction(Customer, Article, Quantity), male(X ), male(Y'), female(X), female(Y')}
article( Article, Category, Size, Price), ® Possible solution

father(X,Y) < parent(X,Y), male(X).
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Intersection Example

# Learning the definition of intersection/3

® B =null(])).
cons(X,Y,[X]|Y]).
member (X, [X|Y]).
member (X, [Z]Y]) — member(X,Y).
notmember(X,[]).
notmember (X, [Z|Y]) «— X # Z, notmember(X,Y).

o Et={int([4,2,6],[5,2,8],[2]))}
=
{int([4,2,6],[5,2,8],[2,6]),int([4,2,6],[5,2,8],[4,2,6])}
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Intersection Example

# Language bias: clauses of the form int(X,Y,7) : —«a
with
a € {null(X), null(Y'), null(Z),
cons(X1, X2, X),int(X2,Y,W)int(X2,Y, 7),
cons(X1, W, Z), member(X1,Y), notmember(X1,Y)}
# Possible solution: P1 =
int(X,Y, 7Z) — null(X),null(Z).
int(X,Y,7) —
cons(X1, X2, X), member(X1,Y),int(X2,Y, W), cons(X1, W, Z).
int(X,Y,7) — cons(X1, X2, X),int(X2,Y, 7).
# Beware: P1 derives int([1],[1],[])

# The program may be inconsistent with examples not in
the training set
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Example

® Possible solution: P2 =
int(X,Y, Z) — null(X),null(Z).
int(X,Y,Z) —

cons(X1, X2, X),member(X1,Y),int(X2,Y, W), cons(X1, W, 7).

int(X,Y, Z) —
cons(X1, X2, X), notmember(X1,Y),int(X2,Y, 7).
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Definitions

® covers(Pye) =trueif BUP e
® covers(P, FE) = {e € E|covers(P,e) = true}

# Atheory P is more general than Q if
covers(P,U) 2 covers(Q,U)

If BUP = @ then P is more general than @

#® Aclause C is more general than D if
covers({C},U) 2 covers({D},U)

If B,C |= D then C'is more general than D

# |[f a clause covers an example, all of its generalizations
will (covers is antimonotonic)

°

°

# If a clause does not cover an example, none of its
specializations will
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Theta Subsumption

#® A clause
h<«bi,...,by
can be seen as a set of literals {h, not b1, ..., not b,}

# A substitution ¢ is a replacement of variable with terms:
0 ={X/a,Y/b}

# (C f-subsumes D (C > D) if there exists a substitution ¢
such that C'0 C D [Plotkin 70]

® C>D=CkED= B,CkE D= Cismore general than
D

s CED#AC>D
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Examples of Theta Subsumption

°

C1 = father(X,Y) < parent(X,Y)
® C2= father(X,Y) « parent(X,Y), male(X)

® (3 = father(john, steve) —
parent(john, steve), male(john)

® C1={father(X,Y),not parent(X,Y)}
® C2 = {father(X,Y),notparent(X,Y ), not male(X)}

® (3=
{father(john, steve), not parent(john, steve), not male(john)}

o Cl1>C2witho =10
® C1>C3with 0 = {X/john,Y/steve}
® C2>C3with 0 ={X/john,Y/steve}
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In Practice

# Coverage test: SLD or SLDNF resolution
s Try to derive e from BU P U {C}

# Generality order:
s 0-subsumption
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Properties of Theta Subsumption

#® (¢-subsumption induces a lattice in the space of clauses

» Every set of clauses has a least upper bound (lub) and
a greatest lower bound (glb)

# This is not true for the generality relation based on
logical consequence
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Lattice

ft(X,Y) «
ft(X,Y) «m(X) ft(X,Y) <p(X,Y) ft(X,Y) « f(X)
ft(X,Y) <p(X,Y),m(X) ft(X,Y) «f(X),m(X) ft(X,Y) «<p(X,Y),f(X)

o e e

ft(X,Y) <=p(X,Y),m(X),f(X)
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Least General Generalization

® lgg(C, D) = least upper bound in the §-subsumption
order

# An algorithm exists which has complexity O(s?) where s
is the size of the clauses

® Example:

C = father(john, mary) < parent(john, mary), male(john)
D = father(david, steve) «— parent(david, steve), male(david)
lgg(C, D) = father(X,Y) « parent(X,Y), male(X)

# For a set of n clauses the complexity is O(s™)
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Least General Generalization Algorithm

# The algorithm keeps a set of anti-substituons A that
contains elements of the form V/¢1, t2 meaning that
variable V' replaced the term ¢1 in the first formula and
the term ¢2 in the second formula

® The lgg of two terms f1(sl,...,sn) and f2(t1,...,tn) is:

fl(lgg(s1,tl),... lgg(sn,tn))

if f1 = f2, otherwise

» if an element of the form
V/f1(sl,...,sn), f2(t1,... tn
the lggis V

o otherwise let V' be a new variable, add
V/f1(sl,...,sn), f2(t1,...,tn) to Aand the lggis V'

) is present in A, then
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Least General Generalization Algorithm

# Examples

lgg(f(a,b,c), f(a

lg9(f(a.a), F(b,5))
A:{X/a b}

fla, X, Y), A={X/bc,Y/c,d}

,d)) =
= f(lgg(a,b),lg9(a,b)) = f(X, X),

# Note that the same variable X is used in both
arguments of the second example because it indicates
the lgg of the same two terms

lgg(f(a,b), f(b,a)) = f(lgg(a,b),lgg(b,a)) = f(X,Y),
A={X/a,bY/b,a}

® Note that two different variables X and Y are used
because the order of the terms is different
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Least General Generalization Algorithm

® The lgg of two literals L1 = (=)p(s1, ..., sn) and
L2 = (—)q(tl,...,tn) is
o undefined if L1 and L2 do not have the same
predicate symbol and sign, otherwise

lgg(L1,L2) = (=)p(lgg(sl,tl),...lgg(sn,tn))

» Examples:

s lgg(parent(john, mary), parent(john, steve)) =
parent(john, X)

s lgg(parent(john, mary), parent(john, steve)) =
unde fined

s lgg(parent(john, mary), father(john, steve)) =
unde fined
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Least General Generalization Algorithm

® 1gg(C, D) = {lgg Lit(L, K)|L € C,K € D and
lgg lit(L, K) is defined}

® Examples

C = father(john, mary) < parent(john, mary), male(john)
D = father(david, steve) < parent(david, steve), male(david)
lgg(C, D) = father(X,Y) <« parent(X,Y), male(X),

A = {X/john,david,Y /mary, steve}

C = win(conf1l) < occ(placel, x, conf1), occ(place2, o, conf1)

D = win(conf2) « occ(placel, x,conf2), occ(place2, x, conf2)
lgg(C, D) = win(Conf) «—

occ(placel, z, Conf), occ(L, x,Conf),
occ(M,Y,Conf),occ(place2,Y, Conf)

A=

{Conf/confl,conf2, L/placel,place2, M /place2, placel,Y /o, x}
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Relative Subsumption

# () subsumption does not take into account background
knowledge

®» C>D&EVYCH)— D)

# Relative Subsumption [Plotkin 71]: C' 6 subsume D
relative to background B (C' >g D) if there exists a
substitution ¢ such that B |= V(C0 — D)
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Relative Least General Generalization

# Relative Least General Generalization (rlgg): Igg with
respect to relative subsumption.

# |t does not exists in the general case of B a set of Horn
clauses

# |t exists in the case that B is a set of ground atoms and
can be computed in this way:

® rlgg((H1 < B1),(H2 «— B2)) =
lgg((H1 «— B1, B),(H2 «— B2, B))
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Relative Least General Generalization

® Example

C1 = father(john, mary)
C2 = father(david, steve)

B = {parent(john, mary), parent(david, steve),
parent(kathy, ellen), female(kathy),
male(john), male(david)}

rlgg(C1,C2) = father(X,Y) < parent(X,Y), male(X)
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Bottom-up Systems

# Covering loop
# Search for a clause from specific to general

Learn(F, B)
P:=0
repeat /* covering loop */
C' :=GenerateClauseBottomUp(FZ, B)
P:=PU{C}
Remove from E the positive examples covered by P
until Sufficiency criterion
return P
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Golem [Muggleton, Feng 90]

# Bottom-up system
# Generalization by means of rlgg
» Sufficiency criterion: £ = ()
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Golem

GolemGenerateClause(F, B)
select randomly some couples of examples from £+
compute their rigg
let C' be the rlgg that covers most positive examples
while covering no negative
repeat
randomly select some examples from £+
compute the rlgg between C and each selected example
let C be the rlgg that covers most positive examples
while covering no negative
remove from E* the examples covered by C
while C' covers no negatives
remove literals from the body of C' until C' covers
some negative examples
return C
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Top-down Systems

# Covering loop as bottom-up systems
# Search for a clause from general to specific
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Top-down Systems

GenerateClauseTopDown(E,B)
Beam = {p(X) < true}
BestClause := null
repeat /* specialization loop */
Remove the first clause C of Beam
compute p(C)
score all the refinements
update BestClause
add all the refinements to the beam
order the beam according to the score
remove the last clauses that exceed the dimension d
until the Necessity criterion is satisfied
return BestClause
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Typical Stopping Criteria

» Sufficiency criteria:
s ET =0
» GenerateClauseTopDown returns null
s a disjunction of the above

# Necessity criteria

» the number of negative examples covered by
BestClause is 0

s the number of negative examples covered by
BestClause is below a threshold

s Beam is empty
s a disjunction of the above
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Refinement Operator

® p(C)={DIDeL.C>D}
# where L is the space of possible clauses

# A refinement operator usually generates only minimal
specializations

# A typical refinement operator applies two syntactic
operations to a clause
s it applies a substitution to the clause
s it adds a literal to the body
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Heuristic Functions

® n,n~ number of positive and negative examples in the
training set, n =n" 4+ n"

# n™(C),n"(C) number of positive and negative examples
covered by clause C

® n(C)=n"(C)+n"(C)

® Accuracy: Acc = P(+|C) (more accurately Precision),
P(+|C) can be estimated by

s relative frequency: P(+|C) = ";((CC))
s m-estimate: P(+|C) = %, where

P(+)=n"/n
s Laplace: m-estimate with m =2, P(+) = 0.5

n+
P(+|C) = L5
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Heuristic Functions

# Coverage: Cov =n"(C)—n"(C)
# Informativity: Inf = logy(Acc)

# Weighted relative accuracy:
WRAce = p(C)(p(+C) = p(+))
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FOIL [Quinlan 90]

# Top-down system with

s Dimension of the beam: 1

» Heuristic: (approximately) weighted gain of Inf:
H =n(C")(Inf(C") — Inf(C))

» Refinement operator: addition of a literal or
unification

s Sufficiency criterion: £ = ()

» Necessity criterion: n=(BestClause) = 0
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Progol [Muggleton 95]

# Top-down system with

s Dimension of the beam: user defined

» Heuristic: Compression:
Comp=n*(C)—n"(C)—|C|

» Refinement operator: see next slides

s Sufficiency criterion: £ = ()

» Necessity criterion: Beam = () or a maximum number
of iterations of the loop is reached
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Progol Refinement Operator

# Progol refinement operator

» adds a literal from the most specific clause L after
having substituted some of the constants with
variables
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Foil Example

°

Learning the definition of father/2

® B = {parent(john, mary), male(john),
parent(david, steve), male(david),
parent(kathy, ellen), female(kathy)}

® Et = {father(john, mary), father(david, steve)}
E~ = {father(kathy, ellen), father(john, steve)}

# Language bias: clauses of the form father(X,Y) : —a
with
a € {parent(X,Y), parent(Y, X),
male(X), male(Y), female(X), female(Y)}

°
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Foil Example

# Covering loop:

# GenerateClauseTopDown:

s father(X,Y) : —true. covers all positive and negative
examples

s father(X,Y): —parent(X,Y). covers all positive
examples but also the negaive example
father(kathy, ellen)

s father(X,Y) : —parent(X,Y), male(X) covers all
positive and no negative examples

# The positive examples are removed. E* is now empty
and the algorithm terminates generating the theory

father(X,Y) : —parent(X,Y), male(X).
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Observations

# Nonexhaustive search: the algorithm explores the
space of possible clauses rather than the space of
possible programs.

# Once a clause is added to the theory it is never
retracted

# No backtracking on clauses

# Problems in the case of recursive predicates or multiple
predicates.

# We may not be able to find a solution even if one exists
in the space of possible programs

# Necessary trade-off to contain the compuational
complexity
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Example Coverage

# Progol tests the coverage of an example e by a clause
C' in the following way: ask the query < ¢ from the
program B U H U {C} where H is the set of clauses
previously added

# FOIL uses extensional coverage:

s resolve the example e with the clause ¢ = h — B
» let 6 be the most general unifier of ¢ with i

s ask the query «— B0 from the program B U E*
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Example Coverage

# With extensional coverage, the clauses are
independent of each other: it does not matter the order
in which they are added to the theory and the search in
the space of clauses is equivalent to the serrch in the
space of programs

# Good for learning recursive predicates and multiple
predicates at once

# Problem: the learned programs may be extensionally
complete and consistent but incomplete and
inconsistent according to the definition of the ILP
problem

# This may happen only when learning programs that are
recursive or that contain multiple predicates
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Other ILP Systems

# Aleph: similar to Progol,
s Many tuning parameters
» Written in Prolog

o Available at http://web.comlab.ox.ac.uk/
activities/machinelearning/Aleph/

# Tilde: learns logical decision trees
# ICL: learns from examples that are interpretations

# Claudien: learns from examples that are interpretations
and performs descriptive induction
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Applications

Biology
Chemistry

»
r
# Engineering
»

Various
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Algorithm Evaluation

# Notation:
s n™(P) number of positive examples covered by P

s n~(P) number of negative examples not covered by

P
s n=|F|
# Accuracy:
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Structure Activity Relationships (SARSs)

# Predicting the activity of a compound on humans based
on its chemical structure and properties

» Drugs: whether they are effective
s Compounds, drugs: whether they are toxic
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Description of Chemical Compounds

Basic structure:

atom(compound, atom, element, atomType, charge)
e.g. atom(d2,d2 1,c¢,22,0.067)

bond(compound, atom1, atom2, bondType)

e.g. bond(d2,d2 1,d2 2,7)

Structures:

benzene(compound, listOfAtoms)

e.g. benzene(dd, [d4 6,d4 1,d4 2,d4 3,d4 4,d4 5))
phenanthrene(compound, listOfListsOfAtoms))
nitro(compound, listOfAtoms)

Properties:

polar(atom, polarity)
polar(d2 1, polar3)
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SAR

# Drugs against Alzheimer’s disease
» Golem: not significantly different from propositional,
comprehensibility [King et al. 95]
# Drugs for inhibition of E. Coli Dihydrofolate Reductase
» Golem: not significantly different from propositional,
comprehensibility [King et al. 95]
# Predicting carcinogenicity

s Progol: 72% highest machine accuracy [Srinivasan
et al. 97]
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SAR

# Predicting mutagenicity
s regression friendly compounds
s FOIL: 82% [Srinivasan et al 95]
ICL: 86.2% [Van Laer et al. 97]
Progol: 88% [Srinivasan et al 95]
Claudien: found alternative explanations [De
Raedt, Dehaspe 97]

s regression unfriendly compounds
s Progol: 85.7% [King et al. 96]

L I )
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Progol on Mutagenesis

active(A) «—

atom(A, B, ¢,27,C),

bond(A, D, E,1),bond(A, E, B,T)
A carbon atom of type 27 merges two six-membered
aromatic rings.
A bond of type 7 is an aromatic bond.
This rule identifies compounds of two fused six-membered
aromatic rings, one of which has a further single bond with

an atom of any type.
: CRE:

D
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Biology

# Description of the binding sites (pharmacophores) of
ACE inhibitors (hypertension drug) and an HIV-protease
inhibitor (an anti-AIDS drug)

» Progol: rediscovered a pharmacophore found by
experts [Finn et al. 98]

# Biological classification of river water quality
» Golem: comprehensibility [Dzeroski et al. 94]
s Claudien: intuitive rules [De Raedt, Dehaspe 97]
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Proteins

Primary structure Secondary structure

Tertiary structure
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Protein Secondary Structure

# Predicting protein secondary structure from the
amino-acid sequence

# Structures

s helices, of various types and length

s strands, of various orientations and length
# Results:

s Golem: 80% [Muggleton et al. 92]

s FOIL: 65% [Quinlan, Cameron-Jones 95]
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Protein Tertiary Structure

# Predicting the tertiary structure of proteins by
classifying them into one of the SCOP classes

# Proteins represented as a sequence of secondary
structure elements

# Results:
» Progol: 78.28% [Turcotte et al. 01]
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Protein Tertiary Structure

| Positive(12) | Negative(12) |
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Chemistry

# |dentification of the structure of diterpene from spectral
information

s FOIL: 78.3% [Dzeroski et al. 96]
s Tilde: 90.4% [Blockeel, De Raedt 98]
# Predicting the half-time of aqueous biodegradation of a
compound from its chemical structure
s ICL: 58.1% [Van Laer et al. 97]
# Judging whether a molecule is a musk
s Tilde: 79.4% [Blockeel, De Raedt 98]
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Engineering

# Learning rules for finite element mesh design

s Claudien: 34% from pos. ex. only [De Raedt,
Dehaspe 97]

s ICL: 66.5% [Van Laer et al. 97]
s Golem: 78% [Dolsak et al. 94]
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Various

# |dentifying document components
s FOIL: 96.3%-100% [Quinlan, Cameron-Jones 95]

# Recovering program loop invariants from program
traces

s Claudien: found true invariants [De Raedt, Dehaspe
97]
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Pointers

® |LPnet2
s http://lwww.cs.bris.ac.uk/~ILPnet2/
s http://www-ai.ijs.si/~ilpnet2/

# KDnet http://www.kdnet.org/

® Books:

s [Lavrac, Dzeroski 94]: freely available in pdf on the
web

s [Bergadano et al. 96]
s [Dzeroski, Lavrac 01]
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