Inductive Logic Programming

Inductive Logic Programming — p. 1/65

Outline

Predictive ILP

Learning from entailment
Bottom-up systems: Golem
Top-down systems: FOIL, Progol
Applications

o o o 0 0

Inductive Logic Programming — p. 2/65

Predictive ILP

® Aim:
s classifying instances of the domain, i.e.
» predicting the class
Two settings:
s Learning from entailment
» Learning from interpretations

Inductive Logic Programming — p. 3/65

Learning from Entailment

» Given
s A set of positive example E*
s A set of negative examples E~
s A background knowledge B
» A space of possible programs H
Find a program P € H such that
s Vet € Et, PUB E ¢ (completeness)
s Ve~ € E7, PUB £ e~ (consistency)

Inductive Logic Programming — p. 4/65

Targeted Mailing

Mailing Example

Category = clothing

Inductive Logic Programming — p. 7/65

customer article 9o POS|t|Ve examp|eS E+ = {Tespond(cmn)}
Name Age Sex Address Resp Name Category Size Price .
o |35 m - o P P pr— # Negative examples
% : " - ket 2| coting |1 150 E~ = {respond(john), respond(mary), respond(steve)}
seve | 31 m v ro oz | Jowder |7 =0 # Background B = facts for relations customer,
transaction and article
transaftion Customer(jOhn, 357 m, CCL) .
Name | Ade | Quantty customer(mary, 25, f, ca).
john bike_1 2
- PREEE customer(ann, 29, f,wa). .. .
seve bket | 1 transaction(john, bike 1,2).
— T transaction(ann, jacket 2,1)....
article(bike 1, sport,l,1000).
article(jacket 2, clothing,l,150). ...
Mailing Example Father Example
Space of programs H: programs containing clauses # Learning the definition of father/2
Wlth ® B = {parent(john, mary), male(john),
» in the head respond(Customer) parent(david, steve), male(david),
s in the body a conjunction of literals from the set parent(kathy, ellen), female(kathy)}
{customer(Customer, Age, Sex, Address) n : .

’ P ' ® Et={fath h ther(david, st
transaction(Customer, Article, Quantity), {father(john, mary), father(david, steve)}
article(Article, Category, Price), ® £~ ={father(kathy,ellen), father(john, steve)}
Age = constant, Sex = constant,} »# Language bias: clauses of the form father(X,Y) : —a

Possible solution with

respond(Customer) «— a € {parent(X,Y), parent(Y, X),
transaction(Customer, Article, Quantity), male(X), male(Y'), female(X), female(Y')}
article(Article, Category, Size, Price), ® Possible solution

father(X,Y) < parent(X,Y), male(X).

Inductive Logic Programming — p. 8/65

Intersection Example

Learning the definition of intersection/3

® B =null(])).
cons(X,Y,[X]|Y]).
member (X, [X|Y]).
member (X, [Z]Y]) — member(X,Y).
notmember(X,[]).
notmember (X, [Z|Y]) «— X # Z, notmember(X,Y).

o Et={int([4,2,6],[5,2,8],[2]))}
=
{int([4,2,6],[5,2,8],[2,6]),int([4,2,6],[5,2,8],[4,2,6])}

Inductive Logic Programming — p. 9/65

Intersection Example

Language bias: clauses of the form int(X,Y,7) : —«a
with
a € {null(X), null(Y'), null(Z),
cons(X1, X2, X),int(X2,Y,W)int(X2,Y, 7),
cons(X1, W, Z), member(X1,Y), notmember(X1,Y)}
Possible solution: P1 =
int(X,Y, 7Z) — null(X),null(Z).
int(X,Y,7) —
cons(X1, X2, X), member(X1,Y),int(X2,Y, W), cons(X1, W, Z).
int(X,Y,7) — cons(X1, X2, X),int(X2,Y, 7).
Beware: P1 derives int([1],[1],[])

The program may be inconsistent with examples not in
the training set

Inductive Logic Programming - p. 10/65

Example

® Possible solution: P2 =
int(X,Y, Z) — null(X),null(Z).
int(X,Y,Z) —

cons(X1, X2, X),member(X1,Y),int(X2,Y, W), cons(X1, W, 7).

int(X,Y, Z) —
cons(X1, X2, X), notmember(X1,Y),int(X2,Y, 7).

Inductive Logic Programming — p. 11/65

Definitions

® covers(Pye) =trueif BUP e
® covers(P, FE) = {e € E|covers(P,e) = true}

Atheory P is more general than Q if
covers(P,U) 2 covers(Q,U)

If BUP = @ then P is more general than @

#® Aclause C is more general than D if
covers({C},U) 2 covers({D},U)

If B,C |= D then C'is more general than D

|[f a clause covers an example, all of its generalizations
will (covers is antimonotonic)

°

°

If a clause does not cover an example, none of its
specializations will

Inductive Logic Programming — p. 12/65

Theta Subsumption

#® A clause
h<«bi,...,by
can be seen as a set of literals {h, not b1, ..., not b,}

A substitution ¢ is a replacement of variable with terms:
0 ={X/a,Y/b}

(C f-subsumes D (C > D) if there exists a substitution ¢
such that C'0 C D [Plotkin 70]

® C>D=CkED= B,CkE D= Cismore general than
D

s CED#AC>D

Inductive Logic Programming — p. 13/65

Examples of Theta Subsumption

°

C1 = father(X,Y) < parent(X,Y)
® C2= father(X,Y) « parent(X,Y), male(X)

® (3 = father(john, steve) —
parent(john, steve), male(john)

® C1={father(X,Y),not parent(X,Y)}
® C2 = {father(X,Y),notparent(X,Y), not male(X)}

® (3=
{father(john, steve), not parent(john, steve), not male(john)}

o Cl1>C2witho =10
® C1>C3with 0 = {X/john,Y/steve}
® C2>C3with 0 ={X/john,Y/steve}

Inductive Logic Programming — p. 14/65

In Practice

Coverage test: SLD or SLDNF resolution
s Try to derive e from BU P U {C}

Generality order:
s 0-subsumption

Inductive Logic Programming — p. 15/65

Properties of Theta Subsumption

#® (¢-subsumption induces a lattice in the space of clauses

» Every set of clauses has a least upper bound (lub) and
a greatest lower bound (glb)

This is not true for the generality relation based on
logical consequence

Inductive Logic Programming — p. 16/65

Lattice

ft(X,Y) «
ft(X,Y) «m(X) ft(X,Y) <p(X,Y) ft(X,Y) « f(X)
ft(X,Y) <p(X,Y),m(X) ft(X,Y) «f(X),m(X) ft(X,Y) «<p(X,Y),f(X)

o e e

ft(X,Y) <=p(X,Y),m(X),f(X)

Inductive Logic Programming — p. 17/65

Least General Generalization

® lgg(C, D) = least upper bound in the §-subsumption
order

An algorithm exists which has complexity O(s?) where s
is the size of the clauses

® Example:

C = father(john, mary) < parent(john, mary), male(john)
D = father(david, steve) «— parent(david, steve), male(david)
lgg(C, D) = father(X,Y) « parent(X,Y), male(X)

For a set of n clauses the complexity is O(s™)

Inductive Logic Programming - p. 18/65

Least General Generalization Algorithm

The algorithm keeps a set of anti-substituons A that
contains elements of the form V/¢1, t2 meaning that
variable V' replaced the term ¢1 in the first formula and
the term ¢2 in the second formula

® The lgg of two terms f1(sl,...,sn) and f2(t1,...,tn) is:

fl(lgg(s1,tl),... lgg(sn,tn))

if f1 = f2, otherwise

» if an element of the form
V/f1(sl,...,sn), f2(t1,... tn
the lggis V

o otherwise let V' be a new variable, add
V/f1(sl,...,sn), f2(t1,...,tn) to Aand the lggis V'

) is present in A, then

Inductive Logic Programming — p. 19/65

Least General Generalization Algorithm

Examples

lgg(f(a,b,c), f(a

lg9(f(a.a), F(b,5))
A:{X/a b}

fla, X, Y), A={X/bc,Y/c,d}

,d)) =
= f(lgg(a,b),lg9(a,b)) = f(X, X),

Note that the same variable X is used in both
arguments of the second example because it indicates
the lgg of the same two terms

lgg(f(a,b), f(b,a)) = f(lgg(a,b),lgg(b,a)) = f(X,Y),
A={X/a,bY/b,a}

® Note that two different variables X and Y are used
because the order of the terms is different

Inductive Logic Programming — p. 20/65

Least General Generalization Algorithm

® The lgg of two literals L1 = (=)p(s1, ..., sn) and
L2 = (—)q(tl,...,tn) is
o undefined if L1 and L2 do not have the same
predicate symbol and sign, otherwise

lgg(L1,L2) = (=)p(lgg(sl,tl),...lgg(sn,tn))

» Examples:

s lgg(parent(john, mary), parent(john, steve)) =
parent(john, X)

s lgg(parent(john, mary), parent(john, steve)) =
unde fined

s lgg(parent(john, mary), father(john, steve)) =
unde fined

Inductive Logic Programming - p. 21/65

Least General Generalization Algorithm

® 1gg(C, D) = {lgg Lit(L, K)|L € C,K € D and
lgg lit(L, K) is defined}

® Examples

C = father(john, mary) < parent(john, mary), male(john)
D = father(david, steve) < parent(david, steve), male(david)
lgg(C, D) = father(X,Y) <« parent(X,Y), male(X),

A = {X/john,david,Y /mary, steve}

C = win(conf1l) < occ(placel, x, conf1), occ(place2, o, conf1)

D = win(conf2) « occ(placel, x,conf2), occ(place2, x, conf2)
lgg(C, D) = win(Conf) «—

occ(placel, z, Conf), occ(L, x,Conf),
occ(M,Y,Conf),occ(place2,Y, Conf)

A=

{Conf/confl,conf2, L/placel,place2, M /place2, placel,Y /o, x}

Inductive Logic Programming - p. 22/65

Relative Subsumption

() subsumption does not take into account background
knowledge

®» C>D&EVYCH)— D)

Relative Subsumption [Plotkin 71]: C' 6 subsume D
relative to background B (C' >g D) if there exists a
substitution ¢ such that B |= V(C0 — D)

Inductive Logic Programming — p. 23/65

Relative Least General Generalization

Relative Least General Generalization (rlgg): Igg with
respect to relative subsumption.

|t does not exists in the general case of B a set of Horn
clauses

|t exists in the case that B is a set of ground atoms and
can be computed in this way:

® rlgg((H1 < B1),(H2 «— B2)) =
lgg((H1 «— B1, B),(H2 «— B2, B))

Inductive Logic Programming — p. 24/65

Relative Least General Generalization

® Example

C1 = father(john, mary)
C2 = father(david, steve)

B = {parent(john, mary), parent(david, steve),
parent(kathy, ellen), female(kathy),
male(john), male(david)}

rlgg(C1,C2) = father(X,Y) < parent(X,Y), male(X)

Inductive Logic Programming - p. 25/65

Bottom-up Systems

Covering loop
Search for a clause from specific to general

Learn(F, B)
P:=0
repeat /* covering loop */
C' :=GenerateClauseBottomUp(FZ, B)
P:=PU{C}
Remove from E the positive examples covered by P
until Sufficiency criterion
return P

Inductive Logic Programming - p. 26/65

Golem [Muggleton, Feng 90]

Bottom-up system
Generalization by means of rlgg
» Sufficiency criterion: £ = ()

Inductive Logic Programming — p. 27/65

Golem

GolemGenerateClause(F, B)
select randomly some couples of examples from £+
compute their rigg
let C' be the rlgg that covers most positive examples
while covering no negative
repeat
randomly select some examples from £+
compute the rlgg between C and each selected example
let C be the rlgg that covers most positive examples
while covering no negative
remove from E* the examples covered by C
while C' covers no negatives
remove literals from the body of C' until C' covers
some negative examples
return C

Inductive Logic Programming — p. 28/65

Top-down Systems

Covering loop as bottom-up systems
Search for a clause from general to specific

Inductive Logic Programming — p. 29/65

Top-down Systems

GenerateClauseTopDown(E,B)
Beam = {p(X) < true}
BestClause := null
repeat /* specialization loop */
Remove the first clause C of Beam
compute p(C)
score all the refinements
update BestClause
add all the refinements to the beam
order the beam according to the score
remove the last clauses that exceed the dimension d
until the Necessity criterion is satisfied
return BestClause

Inductive Logic Programming - p. 30/65

Typical Stopping Criteria

» Sufficiency criteria:
s ET =0
» GenerateClauseTopDown returns null
s a disjunction of the above

Necessity criteria

» the number of negative examples covered by
BestClause is 0

s the number of negative examples covered by
BestClause is below a threshold

s Beam is empty
s a disjunction of the above

Inductive Logic Programming — p. 31/65

Refinement Operator

® p(C)={DIDeL.C>D}
where L is the space of possible clauses

A refinement operator usually generates only minimal
specializations

A typical refinement operator applies two syntactic
operations to a clause
s it applies a substitution to the clause
s it adds a literal to the body

Inductive Logic Programming — p. 32/65

Heuristic Functions

® n,n~ number of positive and negative examples in the
training set, n =n" 4+ n"

n™(C),n"(C) number of positive and negative examples
covered by clause C

® n(C)=n"(C)+n"(C)

® Accuracy: Acc = P(+|C) (more accurately Precision),
P(+|C) can be estimated by

s relative frequency: P(+|C) = ";((CC))
s m-estimate: P(+|C) = %, where

P(+)=n"/n
s Laplace: m-estimate with m =2, P(+) = 0.5

n+
P(+|C) = L5

Inductive Logic Programming - p. 33/65

Heuristic Functions

Coverage: Cov =n"(C)—n"(C)
Informativity: Inf = logy(Acc)

Weighted relative accuracy:
WRAce = p(C)(p(+C) = p(+))

Inductive Logic Programming - p. 34/65

FOIL [Quinlan 90]

Top-down system with

s Dimension of the beam: 1

» Heuristic: (approximately) weighted gain of Inf:
H =n(C")(Inf(C") — Inf(C))

» Refinement operator: addition of a literal or
unification

s Sufficiency criterion: £ = ()

» Necessity criterion: n=(BestClause) = 0

Inductive Logic Programming — p. 35/65

Progol [Muggleton 95]

Top-down system with

s Dimension of the beam: user defined

» Heuristic: Compression:
Comp=n*(C)—n"(C)—|C|

» Refinement operator: see next slides

s Sufficiency criterion: £ = ()

» Necessity criterion: Beam = () or a maximum number
of iterations of the loop is reached

Inductive Logic Programming — p. 36/65

Progol Refinement Operator

Progol refinement operator

» adds a literal from the most specific clause L after
having substituted some of the constants with
variables

Inductive Logic Programming - p. 37/65

Foil Example

°

Learning the definition of father/2

® B = {parent(john, mary), male(john),
parent(david, steve), male(david),
parent(kathy, ellen), female(kathy)}

® Et = {father(john, mary), father(david, steve)}
E~ = {father(kathy, ellen), father(john, steve)}

Language bias: clauses of the form father(X,Y) : —a
with
a € {parent(X,Y), parent(Y, X),
male(X), male(Y), female(X), female(Y)}

°

Inductive Logic Programming - p. 38/65

Foil Example

Covering loop:

GenerateClauseTopDown:

s father(X,Y) : —true. covers all positive and negative
examples

s father(X,Y): —parent(X,Y). covers all positive
examples but also the negaive example
father(kathy, ellen)

s father(X,Y) : —parent(X,Y), male(X) covers all
positive and no negative examples

The positive examples are removed. E* is now empty
and the algorithm terminates generating the theory

father(X,Y) : —parent(X,Y), male(X).

Inductive Logic Programming — p. 39/65

Observations

Nonexhaustive search: the algorithm explores the
space of possible clauses rather than the space of
possible programs.

Once a clause is added to the theory it is never
retracted

No backtracking on clauses

Problems in the case of recursive predicates or multiple
predicates.

We may not be able to find a solution even if one exists
in the space of possible programs

Necessary trade-off to contain the compuational
complexity

Inductive Logic Programming — p. 40/65

Example Coverage

Progol tests the coverage of an example e by a clause
C' in the following way: ask the query < ¢ from the
program B U H U {C} where H is the set of clauses
previously added

FOIL uses extensional coverage:

s resolve the example e with the clause ¢ = h — B
» let 6 be the most general unifier of ¢ with i

s ask the query «— B0 from the program B U E*

Inductive Logic Programming - p. 41/65

Example Coverage

With extensional coverage, the clauses are
independent of each other: it does not matter the order
in which they are added to the theory and the search in
the space of clauses is equivalent to the serrch in the
space of programs

Good for learning recursive predicates and multiple
predicates at once

Problem: the learned programs may be extensionally
complete and consistent but incomplete and
inconsistent according to the definition of the ILP
problem

This may happen only when learning programs that are
recursive or that contain multiple predicates

Inductive Logic Programming - p. 42/65

Other ILP Systems

Aleph: similar to Progol,
s Many tuning parameters
» Written in Prolog

o Available at http://web.comlab.ox.ac.uk/
activities/machinelearning/Aleph/

Tilde: learns logical decision trees
ICL: learns from examples that are interpretations

Claudien: learns from examples that are interpretations
and performs descriptive induction

Inductive Logic Programming — p. 43/65

Applications

Biology
Chemistry

»
r
Engineering
»

Various

Inductive Logic Programming — p. 44/65

Algorithm Evaluation

Notation:
s n™(P) number of positive examples covered by P

s n~(P) number of negative examples not covered by

P
s n=|F|
Accuracy:

Inductive Logic Programming - p. 45/65

Structure Activity Relationships (SARSs)

Predicting the activity of a compound on humans based
on its chemical structure and properties

» Drugs: whether they are effective
s Compounds, drugs: whether they are toxic

Inductive Logic Programming - p. 46/65

Description of Chemical Compounds

Basic structure:

atom(compound, atom, element, atomType, charge)
e.g. atom(d2,d2 1,c¢,22,0.067)

bond(compound, atom1, atom2, bondType)

e.g. bond(d2,d2 1,d2 2,7)

Structures:

benzene(compound, listOfAtoms)

e.g. benzene(dd, [d4 6,d4 1,d4 2,d4 3,d4 4,d4 5))
phenanthrene(compound, listOfListsOfAtoms))
nitro(compound, listOfAtoms)

Properties:

polar(atom, polarity)
polar(d2 1, polar3)

Inductive Logic Programming — p. 47/65

SAR

Drugs against Alzheimer’s disease
» Golem: not significantly different from propositional,
comprehensibility [King et al. 95]
Drugs for inhibition of E. Coli Dihydrofolate Reductase
» Golem: not significantly different from propositional,
comprehensibility [King et al. 95]
Predicting carcinogenicity

s Progol: 72% highest machine accuracy [Srinivasan
et al. 97]

Inductive Logic Programming — p. 48/65

SAR

Predicting mutagenicity
s regression friendly compounds
s FOIL: 82% [Srinivasan et al 95]
ICL: 86.2% [Van Laer et al. 97]
Progol: 88% [Srinivasan et al 95]
Claudien: found alternative explanations [De
Raedt, Dehaspe 97]

s regression unfriendly compounds
s Progol: 85.7% [King et al. 96]

L I)

Inductive Logic Programming — p. 49/65

Progol on Mutagenesis

active(A) «—

atom(A, B, ¢,27,C),

bond(A, D, E,1),bond(A, E, B,T)
A carbon atom of type 27 merges two six-membered
aromatic rings.
A bond of type 7 is an aromatic bond.
This rule identifies compounds of two fused six-membered
aromatic rings, one of which has a further single bond with

an atom of any type.
: CRE:

D

Inductive Logic Programming - p. 50/65

Biology

Description of the binding sites (pharmacophores) of
ACE inhibitors (hypertension drug) and an HIV-protease
inhibitor (an anti-AIDS drug)

» Progol: rediscovered a pharmacophore found by
experts [Finn et al. 98]

Biological classification of river water quality
» Golem: comprehensibility [Dzeroski et al. 94]
s Claudien: intuitive rules [De Raedt, Dehaspe 97]

Inductive Logic Programming — p. 51/65

Proteins

Primary structure Secondary structure

Tertiary structure

Inductive Logic Programming — p. 52/65

Protein Secondary Structure

Predicting protein secondary structure from the
amino-acid sequence

Structures

s helices, of various types and length

s strands, of various orientations and length
Results:

s Golem: 80% [Muggleton et al. 92]

s FOIL: 65% [Quinlan, Cameron-Jones 95]

Inductive Logic Programming - p. 53/65

Protein Tertiary Structure

Predicting the tertiary structure of proteins by
classifying them into one of the SCOP classes

Proteins represented as a sequence of secondary
structure elements

Results:
» Progol: 78.28% [Turcotte et al. 01]

Inductive Logic Programming - p. 54/65

Protein Tertiary Structure

| Positive(12) | Negative(12) |

Inductive Logic Programming — p. 55/65

Chemistry

|dentification of the structure of diterpene from spectral
information

s FOIL: 78.3% [Dzeroski et al. 96]
s Tilde: 90.4% [Blockeel, De Raedt 98]
Predicting the half-time of aqueous biodegradation of a
compound from its chemical structure
s ICL: 58.1% [Van Laer et al. 97]
Judging whether a molecule is a musk
s Tilde: 79.4% [Blockeel, De Raedt 98]

Inductive Logic Programming — p. 56/65

Engineering

Learning rules for finite element mesh design

s Claudien: 34% from pos. ex. only [De Raedt,
Dehaspe 97]

s ICL: 66.5% [Van Laer et al. 97]
s Golem: 78% [Dolsak et al. 94]

Inductive Logic Programming - p. 57/65

Various

|dentifying document components
s FOIL: 96.3%-100% [Quinlan, Cameron-Jones 95]

Recovering program loop invariants from program
traces

s Claudien: found true invariants [De Raedt, Dehaspe
97]

Inductive Logic Programming - p. 58/65

Pointers

® |LPnet2
s http://lwww.cs.bris.ac.uk/~ILPnet2/
s http://www-ai.ijs.si/~ilpnet2/

KDnet http://www.kdnet.org/

® Books:

s [Lavrac, Dzeroski 94]: freely available in pdf on the
web

s [Bergadano et al. 96]
s [Dzeroski, Lavrac 01]

Inductive Logic Programming — p. 59/65

Bibliography

® [Bergadano et al. 96] F. Bergadano and D. Gunetti, Inductive Logic Programming -
From Machine Learning to Software Engineering, MIT Press, 1996

® [Blockeel, De Raedt 98] H. Blockeel and L. De Raedt, Top-down Induction of
First-order Logical Decision Trees, Artificial Intelligence, 101, 1998

® [Bratko, Muggleton 95] I. Bratko and S.H. Muggleton, Applications of Inductive Logic
Programming, Communications of the ACM, 38(11):65-70, 1995

® [Cameron-Jones et al. 94] R. M. Cameron-Jones and J. Ross Quinlan, Efficient
Top-down Induction of Logic Programs, SIGART, 5, 1994

® [De Raedt, Bruynooghe 93] L. De Raedt and M. Bruynooghe, A Theory of Clausal
Discovery, Proceedings of the 13th International Joint Conference on Artificial
Intelligence, 1993

® [De Raedt, Dehaspe 97] L. De Raedt and L. Dehaspe Clausal Discovery, Machine
Learning, 26, 1997.

® [De Raedt, Van Laer 95] L. De Raedt and W. Van Laer, Inductive Constraint Logic,
Proceedings of the 6th Conference on Algorithmic Learning Theory, 1995

Inductive Logic Programming — p. 60/65

Bibliography

® [Dolsak et al. 94] B. Dolsak, |. Bratko and A. Jezernik Finite Element Mesh Design: An
Engineering Domain for ILP Application, Proceedings of the 4th International
Workshop on Inductive Logic Programming, 1994

® [Dzeroski et al. 94] S. Dzeroski, L. Dehaspe, B. Ruck and W. Walley, Classification of
river water quality data using machine learning, Proceedings of the 5th International
Conference on the Development and Application of Computer Techniques to
Environmental Studies, 1994

® [Dzeroski et al. 96] S. Dzeroski, S. Schulze-Kremer, K. Heidtke, K. Siems and D.
Wettschereck, Applying ILP to diterpene structure elucidation from C NMR spectra,
Proc. 6th International Workshop on Inductive Logic Programming, 1996

® [Dzeroski, Lavrac 01] S. Dzeroski and N. Lavrac, editors, Relational Data Mining
Springer, Berlin, 2001

® [Finnetal. 98] P. Finn, S. Muggleton, D. Page and A. Srinivasan. Pharmacophore
discovery using the inductive logic programming system Progol. Machine Learning,
30:241-271, 1998

® [King et al. 95] R. D. King, A. Srinivasan and M. J. E. Sternberg, Relating chemical
activity to structure: an examination of ILP successes. New Gen. Comput., 1995

Inductive Logic Programming - p. 61/65

Bibliography

o

[King et al. 96] R. D. King, S. H. Muggleton, A. Srinivasan and M. Sternberg,
Structure-activity relationships derived by machine learning: the use of atoms and their
bond connectives to predict mutagenicity by inductive logic programming, Proceedings
of the National Academy of Sciences, 93:438-442, 1996

[Lavrac, Dzeroski 94] N. Lavrac and S. Dzeroski, Inductive Logic Programming
Techniques and Applications, Ellis Horwood, 1994

[Muggleton 95] S. H. Muggleton, Inverse Entailment and Progol, New Gen. Comput.,
13:245-286, 1995

[Muggleton 99] S.H. Muggleton, Scientific knowledge discovery using Inductive Logic
Programming. Communications of the ACM, 42(11):42-46, 1999

[Muggleton, De Raedt 94] S.H. Muggleton and L. De Raedt, Inductive logic
programming: Theory and methods, Journal of Logic Programming, 19,20:629-679,
1994

[Muggleton, Feng 90] S. H. Muggleton and C. Feng, Efficient induction of logic
programs, Proceedings of the 1st Conference on Algorithmic Learning Theory, 1990

Inductive Logic Programming - p. 62/65

Bibliography

® [Muggleton et al. 92] S. Muggleton, R. D. King, and M. J. E. Sternberg Predicting
protein secondary structure using inductive logic programming, Protein Engineering,
5:647-657, 1992

® [Plotkin 70] G.D. Plotkin, A note on inductive generalisation, Machine Intelligence 5,
Edinburgh University Press, 1970

® [Plotkin 71] G.D. Plotkin, Automatic Methods of Inductive Inference, PhD thesis,
Edinburgh University, 1971

® [Quinlan 90] J. R. Quinlan, Learning logical definitions from relations, Machine
Learning, 5:239- 266, 1990

® [Quinlan 91] J. R. Quinlan, Determinate literals in inductive logic programming,
Proceedings of Twelfth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 1991

® [Quinlan, Cameron-Jones 93] J. R. Quinlan and R. M. Cameron-Jones, FOIL: A
Midterm Report, Proceedings of the 6th European Conference on Machine Learning,
Springer-Verlag, 1993

Inductive Logic Programming — p. 63/65

Bibliography

o

[Quinlan, Cameron-Jones 95] J. R. Quinlan, and R. M. Cameron-Jones, Induction of
Logic Programs: FOIL and Related Systems, New Generation Comput. 13(3&4):
287-312, 1995

[Riguzzi 06] F. Riguzzi, ALLPAD: Approximate Learning Logic Programs with
Annotated Disjunctions, Inductive Logic Programming, 2006

[Srinivasan et al. 97] A. Srinivasan, R.D. King, S.H. Muggleton and M. Sternberg.
Carcinogenesis predictions using ILP, Proceedings of the Seventh International
Workshop on Inductive Logic Programming, pages 273-287, 1997

[Srinivasan et al. 95] A. Srinivasan, S.H. Muggleton and R.D. King, Comparing the
use of background knowledge by inductive logic programming systems, Proceedings
of the Fifth International Inductive Logic Programming Workshop, 1995

[Turcotte et al. 01] M. Turcotte, S. Muggleton and M. J. E. Sternberg, The effect of
relational background knowledge on learning of protein three-dimensional fold
signatures, Machine Learning, 43(1/2):81-95, 2001
[Van Laer et al. 97] W. Van Laer, L. De Raedt and S. Dzeroski, On Multi-class

Problems and Discretization in Inductive Logic Programming, 10th International
Symposium on Foundations of Intelligent Systems, ISMIS, 1997

Inductive Logic Programming — p. 64/65

Bibliography

® [Vennekens et al. 04] J.Vennekens, S. Verbaeten and M. Bruynooghe, Logic programs
with annotated disjunctions, Proceedings of the Twentieth International Conference on
Logic Programming, 2004

Inductive Logic Programming - p. 65/65

