Decision Tree Learning

Decision Tree

» Examples of systems that learn decision trees: c4.5,
CLS, IDR, ASSISTANT, ID5, CART, ID3.

e Suitable problems:
— Instances are described by attribute-value couples
— The target function has discrete values

— Disjunctive descriptions of concepts may be
required

— The training set may contain errors (noise)
— The training set may contain incomplete data

c4.5

e ¢4.5 [Qui93b,Qui96]: evolution of ID, also by J. R.
Quinlan

* Inspired to one of the first decision tree learning

system, CLS (Concept Learning Systems) by E.B.

Hunt
* Benchmark for many learning systems

Example

* Instances: Saturday mornings
» Classes:
— Good day for playing tennis
— Bad day for playing tennis
* Attributes
— outlook, discrete, values={sunny,overcast,rain}
— temperature, continuous
— humidity, continuous
— windy, discrete, values={true, false}




Training set

No Outlook Temp (°F) Humid (%) | Windy Class
D1 sunny 75 70 T P
D2 sunny 80 90 T N
D3 sunny 85 85 F N
D4 sunny 72 95 F N
D5 sunny 69 70 F P
D6 overcast 72 90 T P
D7 overcast 83 78 F P
D8 overcast 64 65 T P
D9 overcast 81 75 F P
D10 rain 71 80 T N
D11 rain 65 70 T N
D12 rain 75 80 F P
D13 rain 68 80 F P
D14 rain 70 96 F P

Decision Tree

Outlook="?

sunny rain

overcast

Humidity < 75 Windy=?

true false true

false

Decision Tree

Outlook=sunny

| Humidity < 75: P

| Humidity > 75: N
Outlook=overcast: P
Outlook=rain

| Windy=True: N

| Windy=False: P

Notation

* Let T be the training set,
* Let{C,,C,,...,C,} be the set of classes;




Tree Building Algorithm

Example of build_tree

. . T=
* bu"d_tree(T) returns a tree: No Outlook Temp (°F) Humid (%) | Windy Class
— T contains examples from the same class D1 sunny 75 70 T P
» Return a leaf with label the class D2 sunny 80 %0 T N
. D3 sunny 85 85 F N
— T contains examples from more than one class - p—" — - - .
T is partitioned into subsets T,,T,,...,T, D5 sunny 69 70 F P
according to a test on an attribute D6 overcast | 72 ) T P
« Call the algorithm recursively on the subsets: D7 overcast |83 8 F P
. . . D8 overcast 64 65 T P
— child=build_tree(T;) for i=1,...n o pRp—— ) - - >
* Return a subtree with the root associated to the D10 rain 71 80 T N
test and childs child,,...,child,,. D11 rain 65 70 T N
D12 rain 75 80 F P
D13 rain 68 80 F P
° D14 rain 70 9% F P 0
Test on Outlook Test on Outlook
Tsunny: Trainz
No Outlook Temp (°F) Humid (%) | Windy Class No Outlook Temp (°F) Humid (%) | Windy Class
D1 sunny 75 70 T P D10 ram e 80 T N
D2 sunny 80 90 T N D1l rain 65 70 T N
D3 sunny 85 85 = N D12 ra?n 75 80 F P
Da sunny 72 95 = N D13 rafn 68 80 F P
D5 sunny 69 70 = P D14 rain 70 96 F P
* Tovercast:
No Outlook Temp (°F) Humid (%) | Windy Class
D7 overcast 83 78 F P
D8 overcast 64 65 T P
D9 overcast 81 75 F P
1 12




bUIld_tI’GE(Tsunny) bu”d_tree(Tovercast)
e Test: Humidity < 75 T =
overcast
Tsunny, Humidity < 75 No Outlook Temp (°F) | Humid (%) | Windy Class
S I -
No Outlook Temp (°F) Humid (%) | Windy Class D7 overcast 83 78 E P
D1 sunny 5 70 T P D8 overcast 64 65 T P
DS sunny 69 70 F P D9 overcast 81 75 F P
» Leaf, P label
Tsunny, Humidity > 75 » Leaf, P label
No QOutlook Temp (°F) Humid (%) | Windy Class
D2 sunny 80 90 T N
D3 sunny 85 85 F N
D4 sunny 72 95 F N
» Leaf, N label
13 14
build_tree(T,,,) Decision Tree
e Test: Windy="? Outlook=?
Train,true:
sunny rain
No Outlook Temp (°F) Humid (%) | Windy Class
- overcast
D10 rain 71 80 T N
D11 rain 65 70 T N — -
Humidity < 75 Windy="?
« Leaf, N label
Train,false=
true false true, false
No Outlook Temp (°F) | Humid (%) | Windy Class
D12 rain 75 80 F P
D13 rain 68 80 F P P N P N P
D14 rain 70 96 F P

* Leaf, P label

15

16




Tests on Attributes

» Discrete attribute X with n possible values x,...,X:

— Equality with a constant: X=cost, 2 possible
outcomes: yes, no

— Equality test: X=?, n possible outcomes

— Membership in a set: XIS, 2 possible outcomes:
yes, no

— Membership in a set of a partition of {x;,...,X.}: one
outcome per set
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Test on Discrete Attributes

» Example of membership in a set of a partition:

— Attribute Outlook, partition of the set of values
{{sunny}{rain,overcast}}

Outlook="?

{sunny} {rain,overcast}

« Continuous attribute X

— Comparison with a threshold X<cost, 2 possible
outcomes: yes, no
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Termination Condition

* c4.5 stops
— When an uniform set is found
— When an empty set is found

* A leaf is returned with label the most frequent
class in the father

— When no test is such that at least two subsets
contain a minimum number of cases.

* The minimum number of cases is a user-
defined parameter assuming value 2 by default
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Building the Tree

» Search in space of all possible trees

— Once a test is assigned to a node it is possible to
backtrack

— Infeasible
» Greedy search

— Tests on nodes chosen irrevocably: once a test is
assigned to a node it is not possible to backtrack

— Choice on the basis of a heuristic
— Most used heuristics

* Entropy

» Gini index

20




Choice of the Test

Entropy

Choice of the attribute

Discrete attributes:

— Choice of the type of test

— Possibly choice of the constant or partition
Continuous attributes

— Choice of the threshold

Usually only the equality test X=? is used for discrete
attributes

— Only the attribute must be chosen

Constraints that the test must satisfy: at least two
among T, T,,...,T, must contain a minimum number
of examples
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* Ininformation theory, entropy is a measure of the
uncertainty associated with a discrete random
variable.

* Random variable C with k possible values C,,...,C,,
entropy H(C) is given by

H(C) =~ P(C,)logP(C,) = E[-log, P(C)]

* Also known as Shannon entropy
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Information Theory Interpretation

Application to Decision Trees

Suppose you want to transmit a series of messages
made of the values of N random variables
independent and identically distributed (i.i.d.)

What is the minimum number of bits necessary to
transmit these messages?

Source coding theorem (Shannon 1948)

— “The minimum number of bits necessary to
encode the values of N i.i.d. random variables with
negligible risk of information loss is NxH(X) as N
tends to infinity, where H(X) is the entropy of the
random variables”

— H(X) is the minimum number of bits to encode the
value of a random variable X
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* Random variable C: class of an instance randomly

selected fromaset T
* Inthis case ‘T‘
P(C))= ﬁ

« where T;is the set of examples from T that belong to
class C,

* We can define the entropy of T as the entropy of the
random variable C

H(T)=H(C)

24




Entropy

* H(T) measures the minimum number of bits
necessary for encoding, without loss, a message of
the form

— “The present example, randomly selected from the
training set, belongs to class C/"

* H(T) is also called info(T)
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Entropy for Two Classes

* In the case of two classes, + and -, with probabilities
p,=P(+) and p.=P(-)

H(T) =-p, xlog, p, - p_xlog, p_

* Only one variable is independent: p=1-p,

H(T) =-p. xlog, p, = (1- p,)xlog, 1~ p,)

26

Entropy for Two Classes

e Forp,=0.5: p=0.5
H(T)=-05xlog, 05-05% 05=

-05%(-1)-05%x(-1) =1
e Forp,=0:p=1.0
H(T)=-0xlog,0-1xlog,1=—-0%—-c0 -0

* In this case, we define
def

p.xlog, p. |, = lim p, xlog, p, =0

* So H(T)=0-0=0
e Similarly, if p,=1 H(T)=0
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Entropy for Two Classes

1.2

-/ N
I/ \

H(™)
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Entropy

Intuition for Two Classes

« Entropy measures also the non-uniformity or impurity
of a set:
— It is minimal when the set is most pure, i.e., when
it contains examples from only one class
— It is maximal when the set is most impure, i.e.,
when it contains an equal number of examples of
the two classes
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« If all the examples belongs to the same class, | do
not need to communicate the class of a randomly
drawn example

 If the examples are uniformly distributed over classes
in the training set, | need to use 1 bit on average:
message 0 encodes one class, message 1 the other
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Example

Entropy for Three Classes

* Play tennis problem

» Training set T: 14 examples, 9 positive, 5 negative
e Entropy of T

* Remember: log x=log,x/log,,a=In x/In a

* log,,2=0.301
H(T)=-(9/14)log(9/14)-(5/14)log(5/14)=
=-(9/14)log(9/14)/0.301-(5/14)logy(5/14)/0.301=
=-0.643*(-0.192)/0.301-0.357*(-0.447)/0.301=
=0.410+0.530=0.940
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» Three classes {C;,C,,C;}:
- p.=P(Cy)
— p,=P(C,)
— p3=P(C,)
— Only two independent variables: p;=1-p,-p,

H(T) =-p,xlog, p, - p, *log, p, -
- (1_ P, = pz)XIng (1_ P~ pz)

32




Entropy for Three Classes

Maximum of the Entropy

* The maximum of the entropy is obtained for a uniform
distribution of the examples over classes

» For three classes: p,=p,=p,=1/3=0,333
e H(T)=-3*1/3*log,1/3=log,3=1,585
* For k classes, we get the maximum for P(Cj)=1/k

K1 1 1
Hmax(T) = _ZEXIOQZKE) = kXEX|ng k= |ng k

=1

34

c4.5 Heuristic

Assign to a test on an attribute the value given by the
decrease of entropy (information gain) due to the
partitioning of the set of examples according to the
test

Test X with n possible outcomes

Set of examples T is partitioned into n subsets
T,....T,

Entropy after the partitioning: weighted average
entropy in the subsets

H (T) =Z?=1%XHCE)
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Information Gain

gain(X) = H(T) —H (T)

* Itis equivalent to the number of bits necessary for
encoding the class of examples that we save when
we also know the result of the test X on the examples

» Entropy decreases as more and more uniform
subsets are obtained

36




Attribute Choice

» The attribute with the highest information gain is
selected for splitting the current set of examples
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Example

Test on the attribute Windy:

Windy=F => T, contains 6 positive and 2 negative
examples

Windy=T => T; contains 3 positive and 3 negative
examples

T=[9,5]
Te=[6,2]
T.=[3,3]
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Example
Windy Play Don't Play | Total
F 6 2 8
T 3 3 6
Total 9 5 14

» H(T)=-6/8*l0g,(6/8)-2/8*l0g,(2/8)=0.811
* H(T;)=-3/6*l0g,(3/6)-3/6*l0g,(3/6)=1
gain(Windy)=H(T)-(8/14*H(T)+6/14*H(T))=
0.940-(8/14)*0.811-(6/14)*1=0.048
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Example

Test on the attribute outlook:

Outlook=sunny=> T, contains 2 pos and 3neg
Outlook=overcast=> T ,qcas
Outlook=rain=> T,,,contains 3 pos and 2 neg
T=[915]’ Train =[312]1 Tsunny=[213]' Tovercast:[410]

.contains 4 pos and Oneg

40




Problems of Information Gain

Example
Outlook Play Don't Play | Total
Sunny 2 3 5
Overcast 4 0 4
Rain 3 2 5
Total 9 5 14

gain(Outlook)=H(T)-((5/14)*H(T 40+ (5/14)*H(T gynny)+
(4/14)*H (Tovercast)):
0.940-0.357*0.971-0.357+0.971-0.286*0=0.246
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» High tendency to favor tests with many results

» Example: test on an attribute that is a key: |T;|=1, n =
|T]

H(T,) =00i 0[12,...,n]= H,(T) =0

* So the gain is maximum:

gain(X) = H(T)

* Example: diagnosis problem, examples=patients,
attribute="Patient’s name”

— Useless attribute but has the highest gain
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Normalized Gain

Gain Ratio in the Diagnosis example

* The gain is normalized with respect to the entropy of
the test itself

 The random variable in this case is the value of the
attribute X

n [T T
* Gain ratio

gain(X)

gainratio(X) = H 0¥
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* X=patient name

gain(X) =H(T) <log, k
n1 1 1
H(X)=-) =log,—=n=log, n=1og, n
(X) len g, ~=n-_log, g,

gainratio(X) SM
log, n

* If n>>k=gain ratio(X) is small
* H(X) is also called splitinfo

44




Example

gainratio(Windy)=gain(Windy)/H(Windy)
H(Windy)=-8/14*log,(8/14)-6/14*l0g,(6/14)=0.985
gainratio(Windy)=0.048/0.985=0.048

gainratio(Outlook)=gain(Outlook)/H(Outlook)

H(Outlook)=-5/14*l0g,(5/14)-5/14*l0g,(5/14) -
4/14*l0g,(4/14)=1.577

gainratio(Outlook)=0.246/1.577=0.156
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Gini Index

» Other impurity measure

gini(T) :1—i P(C,)?

* For two classes

gini(T) =1- p,” - (@-p,)> =2p, —2p?
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Gini Index

* The max of Gini index is achieved for p,=p.=0,5:
gini(T)=0,5

e The min is achieved for p,=0 or p_=0: gini(T)=0

» For three classes

gini(T) =1-p°-p, —A-p, - p,)°
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Gini index

gini
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Gini Index for Three Classes

gini
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Gini Index

* In general, the Gini index has a maximum for
P1=P,=...p=1/k

. K (1Y 1 1
gini(T) =1- (—) =1-kx—==1-—
21: K K2 K

» and a minimum for p,=1, p,=...p,=0: gini(T)=0
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Gini index

* Gini index after the split on attribute X

- n (Tl

gini, (T) = Zj:le gini(T,)

» The attribute X that gives the lowest gini,(T) is
chosen for the split

* Gini index is used by CART
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Tests on Continuous Attributes

» Suppose continuous attribute X assumes m values in
T

e Let<V,V,,....,V,,> be the values ordered from the
smallest to the largest

* The test X <V, divides the m values into two groups:

o X<V, {V,,....V}}

¢ X> Vi : {Vi+1""'vm}

* So we have m-1 candidates for the threshold: V,, ...,
Vm—l

» Each candidate must be evaluated

52




Tests on Continuous Attributes

Tests on Continuous Attributes

» Evaluation of a test:
— Sort the examples on the basis of the attribute X
— Count the examples

* Let g;; be the number of examples that have
value V; for X and belong to class C, for
i=1,...k i=1,...,m-1

* Let e, be the number of examples that belong to
class C;for k=1,...,k

— Each test has two possible outcomes: yes or no
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d;es=€xamples of class j in branch X <V,

d; no=examples of class j in branch X >V;

For j=1to k d; =0 d, ,,=€;

Fori=1to m-1

— Let the test be X <V,

— Forj=1tok
¢ dj,yes:zdj,yes
* djno'=0; no"€;

— The heuristic for attribute X, threshold V, can be

computed from the values

dl,yes’ ree 1dk,yes’dl,no1 e !dk,no

+ej,i
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Attributes with Unknown Value

Attributes with Unknown Value

« If the training set contains examples with one or more
attributes unspecified

* For example
<?,72,90,T,P>

* How do we take into account this example when
computing the heuristic and when splitting the
example set?
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Test evaluation:
— Consider a discrete attribute X with n values {x;,...,x.}
— Let F be the set of examples of T that have X known
— F provides us with a distribution of examples into values and
class P(x;,C)
— We assume that the unknown values have the same
distribution P(x;,C)) with respect to the attribute and the class

— Therefore the examples with unknown values do not alter
the value of the entropy or of the Gini index
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Attributes with Unknown Value

Attributes with Unknown Value

» Entropy of the partitioning: the unknown value is
considered as a value of its own

* LetT,,, be the set of examples of T with unknown
value for X

» c4.5 further penalizes attributes with unknown values

by multiplying the gain by the probability that the
attribute is known

» If Fis the set of examples of T with X known

4T u
H(X)=-) “xlog,| IF|
2 - —
= [T| T| galn(X)—WX(H(F)—HX(F))
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Example Example
» Suppose that in the example database the case D6 : Outlook Play Don't Play | Total
Outlook=overcast, Temperature=72, Humidity=90, Windy=T Sunny 2 3 5
e s rep|aced by Overcast 3 0 3
Outlook=?, Temperature=72, Humidity=90, Windy=T Rain 3 2 5
 The frequencies of Outlook over F are Total 8 > 13

Outlook Play Don't Play | Total
Sunny 2 3 5
Overcast 3 0 3
Rain 3 2 5
Total 8 5 13
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« H(F)=-8/13*0g,(8/13)-5/13*0g,(5/13)=0.961
o Hoyioo(F)=5/13*(-2/5*l0g,(2/5)-3/5*0g,(3/5))

+3/13*(-3/3*l0g,(3/3)-0/3*l0g,(0/3))
+5/13%(-3/5*10g2(3/5)-2/5*0g2(2/5))

=0.747

less than before)

» gain(Outlook)=13/14*(0.961-0.747)=0.199 (slightly
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Example

Partitioning

* H(Outlook)=-5/14*log,(5/14)-3/14*l0g,(3/14)-
5/14*l0g,(5/14)-1/14*l0g,(1/14)=1.809

« gainratio(Outlook)=0.199/1.809=0.110
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* In which subset of a node with test on X do we put an
example with X unknown?

» Partitioning is generalized in a probabilistic sense:
— Each example of T is assigned a weight, initially 1
— Each example is inserted in every subset T; with a
weight
 If we partition on discrete attribute X
— If example e, with weight w in T, has X=x;, e is put
in T; with weight w and in T; with j#i with weight O
— If example e, with weight w in T, has X=?, e is put
in T, with weight w x P(x;)
— P(x;) can be estimated by relative frequency in F

62

Example

» Partitioning according to Outlook
* No problem for the 13 cases of F

« Example D6 is assigned to sets Tg,nys Tovercast 2Nd
T,.in With weights 5/13, 3/13 e 5/13 respectively
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Example
* Consider Tg,ny
No Outlook Temp Humidity Windy Class Weight
D1 sunny 75 70 T P 1
D2 sunny 80 90 T N 1
D3 sunny 85 85 F N 1
D4 sunny 72 95 F N 1
D5 sunny 69 70 F P 1
D6 ? 72 90 T P 5/13

If T is partitioned on Humidity with threshold 75,

sunny . - . i
we get the following distribution:

— Humidity £ 75 2 class P, 0 class N
— Humidity > 75 5/13 class P, 3 class N
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Example

» The second subset still contains examples from two
classes but no test produces two subsets with at
least two examples=> stop

Outlook=sunny

| Humidity < 75: P (2.0)

| Humidity > 75: N (3.4/0.4)
Outlook=overcast: P (3.2)
Outlook=rain

| Windy=True: N (2.4/0.4)

| Wndy=False: P (3.0)
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Output Interpretation

Numbers (A/B) associated to leaves
» A=total weight of examples associated to the leaf

» B=total weight of examples associated to the leaf that
are misclassified

* For example
N (3.4/0.4)

* Means that 3.4 cases belong to the leaf of which 0.4
do not belong to class N
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Classification of Unseen Cases with All
Values Known

* An unseen (new) case e with all attributes known is
classified by

— Traversing the tree from the root by following the
branches that correspond to the values of the
case

— Suppose that the leaf

Pos (A/B)

— is reached, then e is classified as Pos with

probability (A-B)/A and Neg with probability B/A

— In the case of more than two classes, the
distribution of examples into classes at the leaf is
used
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Classification of Unseen Cases with
Unkown Values

* If e has X unknown
* e is associated with a weight w, initially set to 1

» When traversing the tree, if the attribute at the current
node is unknown in e we explore all subtrees.

» Subtree T, is explored by assigning e to T, with weight
W x P(xj)

. P(xj) is estimated by considering by relative
frequency over T

» The information about relative frequencies are stored
in the leaves that are descendants of T
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Classification of Unseen Cases with
Unkown Values

In the end more than one leaf will be reached
Let L be the set of leaves that are reached
Let w, be the weight of e that reaches |

Let P(C||l) be the relative frequency of examples in |
belonging to class C;

(]

Example

* Unseen example e
Outlook=sunny, Temperature=70, Humidity=?, Windy=F
e Outlook=sunny => first subtree

* Humidity=?=> we cannot determine whether
Humidity < 75

e Then » We follow both branches with weights
— Branch Humidity < 75: w=2.0/5.4=0.370
. = X :
P(CJ |€) EW' P(CJ II) — Branch Humidity > 75: w=3.4/5.4=0.630
69 70
Example Overfitting

* Leaf humidity < 75:
— P(P|)=100%
— P(N|)=0%
e Leaf humidity > 75
— P(N|l)= 3/3.4=88%
— P(P|l)=0.4/3.4=12%
e Overall we get
— P(P|e)=0.370*100%+0.630*12%=44%
— P(N|e)=0.630*88%=56%
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* A hypothesis overfits the data when there exists a
simpler hypothesis less accurate on the training set
but more accurate on the universe

* It may happen when the training set contains errors
or when the training set is small
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Overfitting

Overfitting
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» Example: consider the previous training set plus
<sunny,80,70,strong,N>

» which should be positive but it is erroneously
classified as negative

* The tree h’ learned from the new training set is more
complex than the tree h learned from the original
training set

* However, since the new example is incorrect, h’ will
make more mistakes than h on U
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Approaches to Avoid Overfitting

How to Determine the Optimal Dimension of
the Tree

» Stop the growth before reaching a tree that perfectly
classifies the training examples (prepruning)

» Grow the tree and prune it afterwards (postpruning)
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» Using a separate example set for evaluating the tree
(“training and validation set” approach)

» Using all the available examples for training but using
a statistical test to decide whether to keep a node or
not

» Using an explicit measure of the complexity of
encoding the tree and the examples that are
exceptions and choose a tree that (locally) minimizes
this measure (minimum description length principle)
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Observation on c4.5 Search

» ¢4.5 performs a hill-climbing search in the space of
possible trees from the simplest hypothesis towards
more and more complex hypothesis

» The space of all possible trees is equivalent to the
powerset of the set of examples so the target concept
is surely included in the search space

* ¢4.5 mantains only a single hypothesis during the
search and does not perform backtracking, so it may
find a solution only locally optimal

7

Observations on ¢c4.5 Search

» c4.5 uses all the training examples in each step for
deciding how to refine the tree differently from other
methods that make decisions in an incremental way
on the basis of individual examples. As a result, c4.5
is less sensible to errors in single examples.
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Useful Links

« C45
http://www.rulequest.com/Personal/
C source code

* Weka: open source suite of machine learning
algorithms written in Java

http://www.cs.waikato.ac.nz/ml/weka/
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