
Decision Tree Learning Decision Tree Learning 
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DecisionDecision TreeTree

• Examples of systems that learn decision trees: c4.5, 
CLS, IDR, ASSISTANT, ID5, CART, ID3.

• Suitable problems:
– Instances are described by attribute-value couples
– The target function has discrete values
– Disjunctive descriptions of concepts may be 

required
– The training set may contain errors (noise)
– The training set may contain incomplete data
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c4c4.5.5

• c4.5 [Qui93b,Qui96]: evolution of ID, also by J. R. 
Quinlan

• Inspired to one of the first decision tree learning 
system, CLS (Concept Learning Systems) by E.B.
Hunt

• Benchmark for many learning systems
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ExampleExample

• Instances: Saturday mornings
• Classes: 

– Good day for playing tennis
– Bad day for playing tennis

• Attributes
– outlook, discrete, values={sunny,overcast,rain}
– temperature, continuous
– humidity, continuous
– windy, discrete, values={true, false}
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Training setTraining set

PF9670rainD14

PF8068rainD13

PF8075rainD12

NT7065rainD11

NT8071rainD10

PF7581overcastD9

PT6564overcastD8

PF7883overcastD7

PT9072overcastD6

PF7069sunnyD5

NF9572sunnyD4

NF8585sunnyD3

NT9080sunnyD2

PT7075sunnyD1

ClassWindyHumid (%)Temp (°F)Outlook No
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Decision TreeDecision Tree

Outlook=?

rainsunny

Humidity ≤ 75

P

true

N

false

Windy=?

N

true

P

false

P

overcast
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Decision TreeDecision Tree

Outlook=sunny

| Humidity ≤ 75: P
| Humidity > 75: N

Outlook=overcast: P
Outlook=rain

| Windy=True: N
| Windy=False: P
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NotationNotation

• Let T be the training set,
• Let {C1,C2,…,Ck} be the set of classes; 
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TreeTree Building Building AlgorithmAlgorithm

• build_tree(T) returns a tree:
– T contains examples from the same class

• Return a leaf with label the class
– T contains examples from more than one class

• T is partitioned into subsets T1,T2,…,Tn
according to a test on an attribute

• Call the algorithm recursively on the subsets:
– childi=build_tree(Ti) for i=1,…n

• Return a subtree with the root associated to the 
test and childs child1,…,childn. 
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Example of Example of build_treebuild_tree

T=

PF9670rainD14

PF8068rainD13

PF8075rainD12

NT7065rainD11

NT8071rainD10

PF7581overcastD9

PT6564overcastD8

PF7883overcastD7

PT9072overcastD6

PF7069sunnyD5

NF9572sunnyD4

NF8585sunnyD3

NT9080sunnyD2

PT7075sunnyD1

ClassWindyHumid (%)Temp (°F)Outlook No
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Test on OutlookTest on Outlook

• Tsunny=

PF7069sunnyD5

NF9572sunnyD4

NF8585sunnyD3

NT9080sunnyD2

PT7075sunnyD1

ClassWindyHumid (%)Temp (°F)Outlook No

PF7581overcastD9

PT6564overcastD8

PF7883overcastD7

ClassWindyHumid (%)Temp (°F)Outlook No

• Tovercast=
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Test on OutlookTest on Outlook

• Train=

PF9670rainD14

PF8068rainD13

PF8075rainD12

NT7065rainD11

NT8071rainD10

ClassWindyHumid (%)Temp (°F)Outlook No
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build_tree(Tbuild_tree(Tsunnysunny))

• Test: Humidity ≤ 75
• Tsunny, Humidity ≤ 75

PF7069sunnyD5

PT7075sunnyD1

ClassWindyHumid (%)Temp (°F)Outlook No

NF9572sunnyD4

NF8585sunnyD3

NT9080sunnyD2

ClassWindyHumid (%)Temp (°F)Outlook No

• Leaf, P label
• Tsunny, Humidity > 75

• Leaf, N label
14

build_tree(Tbuild_tree(Tovercastovercast))

PF7581overcastD9

PT6564overcastD8

PF7883overcastD7

ClassWindyHumid (%)Temp (°F)Outlook No

• Tovercast=

• Leaf, P label
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build_tree(Tbuild_tree(Trainrain))

• Test: Windy=?
• Train,true=

NT7065rainD11

NT8071rainD10

ClassWindyHumid (%)Temp (°F)Outlook No

PF9670rainD14

PF8068rainD13

PF8075rainD12

ClassWindyHumid (%)Temp (°F)Outlook No

• Leaf, N label
• Train,false=

• Leaf, P label 16

Decision TreeDecision Tree

Outlook=?

rainsunny

Humidity ≤ 75

P

true

N

false

Windy=?

N

true

P

false

P

overcast
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TestsTests on on AttributesAttributes

• Discrete attribute X with n possible values x1,…,xn: 
– Equality with a constant: X=cost, 2 possible 

outcomes: yes, no
– Equality test: X=?, n possible outcomes

– Membership in a set: X∈S, 2 possible outcomes: 
yes, no

– Membership in a set of a partition of {x1,…,xn}: one 
outcome per set
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Test on Discrete Test on Discrete AttributesAttributes

• Example of membership in a set of a partition:
– Attribute Outlook, partition of the set of values 

{{sunny},{rain,overcast}}

Outlook=?

{rain,overcast}{sunny}

• Continuous attribute X
– Comparison with a threshold X≤cost, 2 possible 

outcomes: yes, no
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Termination ConditionTermination Condition

• c4.5 stops
– When an uniform set is found
– When an empty set is found

• A leaf is returned with label the most frequent 
class in the father

– When no test is such that at least two subsets 
contain a minimum number of cases.

• The minimum number of cases is a user-
defined parameter assuming value 2 by default
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Building the Building the TreeTree

• Search in space of all possible trees
– Once a test is assigned to a node it is possible to 

backtrack
– Infeasible

• Greedy search
– Tests on nodes chosen irrevocably: once a test is 

assigned to a node it is not possible to backtrack
– Choice on the basis of a heuristic
– Most used heuristics

• Entropy
• Gini index
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Choice of the TestChoice of the Test

• Choice of the attribute
• Discrete attributes:

– Choice of the type of test
– Possibly choice of the constant or partition 

• Continuous attributes
– Choice of the threshold

• Usually only the equality test X=? is used for discrete 
attributes
– Only the attribute must be chosen

• Constraints that the test must satisfy: at least two 
among T1,T2,…,Tn must contain a minimum number
of examples
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EntropyEntropy

• In information theory, entropy is a measure of the 
uncertainty associated with a discrete random 
variable. 

• Random variable C with k possible values C1,…,Ck, 
entropy H(C) is given by

)](log[)(log)()( 2
1

CPECPCPCH
k

j
jj −=−= ∑

=

• Also known as Shannon entropy
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Information Theory InterpretationInformation Theory Interpretation

• Suppose you want to transmit a series of messages 
made of the values of N random variables 
independent and identically distributed (i.i.d.)

• What is the minimum number of bits necessary to 
transmit these messages?

• Source coding theorem (Shannon 1948) 
– “The minimum number of bits necessary to 

encode the values of N i.i.d. random variables with 
negligible risk of information loss is N×H(X) as N 
tends to infinity, where H(X) is the entropy of the 
random variables”

– H(X) is the minimum number of bits to encode the 
value of a random variable X
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Application to Decision Trees Application to Decision Trees 

• Random variable C: class of an instance randomly 
selected from a set T

• In this case

T

T
CP

j

j =)(

• where Tj is the set of examples from T that belong to 
class Cj

• We can define the entropy of T as the entropy of the 
random variable C

H(T)=H(C)
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EntropyEntropy

• H(T) measures the minimum number of bits 
necessary for encoding, without loss, a message of 
the form
– “The present example, randomly selected from the 

training set, belongs to class Cj”
• H(T) is also called info(T)
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Entropy for Two ClassesEntropy for Two Classes

• In the case of two classes, + and -, with probabilities 
p+=P(+) and p-=P(-)

−−++ ×−×−= ppppTH 22 loglog)(

• Only one variable is independent: p-=1-p+

)1(log)1(log)( 22 ++++ −×−−×−= ppppTH
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Entropy for Two ClassesEntropy for Two Classes

• For p+=0.5: p-=0.5

001log10log0)( 22 −−∞×−=×−×−=TH

• In this case, we define

0loglim|log 2
0

02 =×=× ++→=++
+

+
pppp

p

def

p

1)1(5.0)1(5.0

5.05.05.0log5.0)( 2

=−×−−×−
=×−×−=TH

• For p+=0: p-=1.0

• So H(T)=0-0=0
• Similarly, if p+=1 H(T)=0
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Entropy for Two ClassesEntropy for Two Classes
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EntropyEntropy

• Entropy measures also the non-uniformity or impurity 
of a set:
– It is minimal when the set is most pure, i.e., when 

it contains examples from only one class 
– It is maximal when the set is most impure, i.e., 

when it contains an equal number of examples of 
the two classes

30

Intuition for Two ClassesIntuition for Two Classes

• If all the examples belongs to the same class, I do 
not need to communicate the class of a randomly 
drawn example

• If the examples are uniformly distributed over classes 
in the training set, I need to use 1 bit on average: 
message 0 encodes one class, message 1 the other
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ExampleExample

• Play tennis problem
• Training set T: 14 examples, 9 positive, 5 negative
• Entropy of T
• Remember: logax=log10x/log10a=ln x/ln a
• log102=0.301
H(T)=-(9/14)log2(9/14)-(5/14)log2(5/14)=

=-(9/14)log10(9/14)/0.301-(5/14)log10(5/14)/0.301=

=-0.643*(-0.192)/0.301-0.357*(-0.447)/0.301=

=0.410+0.530=0.940
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Entropy for Three ClassesEntropy for Three Classes

• Three classes {C1,C2,C3}: 
– p1=P(C1)
– p2=P(C2)
– p3=P(C3)
– Only two independent variables: p3=1-p1-p2

)1(log)1(

loglog)(

21221

222121

pppp

ppppTH

−−×−−−
−×−×−=
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Entropy for Three ClassesEntropy for Three Classes
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H(T)
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p1
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Maximum of the EntropyMaximum of the Entropy

• The maximum of the entropy is obtained for a uniform 
distribution of the examples over classes

• For three classes: p1=p2=p2=1/3=0,333
• H(T)=-3*1/3*log21/3=log23=1,585
• For k classes, we get the maximum for P(Cj)=1/k

kk
k

k
kk

TH
k

j
22

1
2max loglog

11
log

1
)( =××=







×−= ∑
=

35

c4c4.5.5 HeuristicHeuristic

• Assign to a test on an attribute the value given by the 
decrease of entropy (information gain) due to the 
partitioning of the set of examples according to the 
test

• Test X with n possible outcomes
• Set of examples T is partitioned into n subsets 

T1,…,Tn

• Entropy after the partitioning: weighted average 
entropy in the subsets

)()(
1 i

n

i

i
X TH

T

T
TH ×=∑ =
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IInformation Gain

• It is equivalent to the number of bits necessary for 
encoding the class of examples that we save when 
we also know the result of the test X on the examples

• Entropy decreases as more and more uniform 
subsets are obtained

)()()( THTHXgain X−=
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AttributeAttribute ChoiceChoice

• The attribute with the highest information gain is 
selected for splitting the current set of examples
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ExampleExample

• Test on the attribute Windy:
• Windy=F => TF contains 6 positive and 2 negative 

examples
• Windy=T => TT contains 3 positive and 3 negative 

examples
• T=[9,5]
• TF=[6,2] 
• TT=[3,3] 
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ExampleExample

• H(TF)=-6/8*log2(6/8)-2/8*log2(2/8)=0.811
• H(TT)=-3/6*log2(3/6)-3/6*log2(3/6)=1
gain(Windy)=H(T)-(8/14*H(TF)+6/14*H(TT))=
0.940-(8/14)*0.811-(6/14)*1=0.048

1459Total

633T

826F

TotalDon’t PlayPlayWindy
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ExampleExample

• Test on the attribute outlook:
• Outlook=sunny=> Tsunnycontains 2 pos and 3neg
• Outlook=overcast=> Tovercastcontains 4 pos and 0neg
• Outlook=rain=> Traincontains 3 pos and 2 neg
• T=[9,5],  Train =[3,2], Tsunny=[2,3], Tovercast=[4,0] 
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ExampleExample

gain(Outlook)=H(T)-((5/14)*H(Train)+(5/14)*H(Tsunny)+
(4/14)*H(Tovercast))=
0.940-0.357*0.971-0.357*0.971-0.286*0=0.246

1459Total

523Rain

404Overcast

532Sunny

TotalDon’t PlayPlayOutlook
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ProblemsProblems of of InformationInformation GainGain

• High tendency to favor tests with many results
• Example: test on an attribute that is a key: |Ti|=1, n = 

|T| 

• So the gain is maximum:

[ ] 0)(,,2,10)( =⇒∈∀= THniTH Xi K

)()( THXgain =

• Example: diagnosis problem, examples=patients, 
attribute=“Patient’s name”
– Useless attribute but has the highest gain
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NormalizedNormalized GainGain

• The gain is normalized with respect to the entropy of 
the test itself

• The random variable in this case is the value of the 
attribute X

• Gain ratio
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Gain Ratio in the Gain Ratio in the DiagnosisDiagnosis exampleexample

• X=patient name

kTHXgain 2log)()( ≤=

nn
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XH
n
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loglog
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log
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n

k
Xgainratio

2

2
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log
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• If n>>k⇒gain ratio(X) is small
• H(X) is also called splitinfo
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ExampleExample

gainratio(Windy)=gain(Windy)/H(Windy)
H(Windy)=-8/14*log2(8/14)-6/14*log2(6/14)=0.985
gainratio(Windy)=0.048/0.985=0.048

gainratio(Outlook)=gain(Outlook)/H(Outlook)
H(Outlook)=-5/14*log2(5/14)-5/14*log2(5/14) -

4/14*log2(4/14)=1.577
gainratio(Outlook)=0.246/1.577=0.156
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Gini IndexGini Index

• Other impurity measure

∑
=

−=
k

j
jCPTgini

1

2)(1)(

• For two classes

222 22)1(1)( ++++ −=−−−= ppppTgini
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Gini IndexGini Index

• The max of Gini index is achieved for p+=p-=0,5: 
gini(T)=0,5

• The min is achieved for p+=0 or p-=0: gini(T)=0
• For three classes

2
21

2
2

2
1 )1(1)( ppppTgini −−−−−=
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Gini indexGini index
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Gini Index for Three ClassesGini Index for Three Classes
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p1
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Gini IndexGini Index

• In general, the Gini index has a maximum for 
p1=p2=...pk=1/k
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• and a minimum for p1=1, p2=...pk=0: gini(T)=0
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Gini indexGini index

• Gini index after the split on attribute X

)()(
1 i

n

j

i
X Tgini

T

T
Tgini ×=∑ =

• The attribute X that gives the lowest giniX(T) is 
chosen for the split

• Gini index is used by CART
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Tests on Continuous AttributesTests on Continuous Attributes

• Suppose continuous attribute X assumes m values in 
T

• Let <V1,V2,….,Vm> be the values ordered from the 
smallest to the largest

• The test X ≤ Vi divides the m values into two groups:
• X ≤ Vi : {V1,…,Vi}
• X > Vi : {Vi+1,…,Vm}
• So we have m-1 candidates for the threshold: V1, ..., 

Vm-1

• Each candidate must be evaluated
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TestsTests on on ContinuousContinuous AttributesAttributes

• Evaluation of a test:
– Sort the examples on the basis of the attribute X
– Count the examples

• Let ej,i be the number of examples that have 
value Vi for X and belong to class Cj for 
j=1,…,k, i=1,…,m-1

• Let ej be the number of examples that belong to 
class Cj for k=1,…,k

– Each test has two possible outcomes: yes or no
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TestsTests on on ContinuousContinuous AttributesAttributes

• dj,yes=examples of class j in branch X ≤ Vi

• dj,no=examples of class j in branch X > Vi

• For j=1 to k dj,yes=0 dj,no=ej

• For i=1 to m-1

– Let the test be X ≤ Vi

– For j=1 to k 
• dj,yes:=dj,yes+ej,i

• dj,no:=dj,no-ej,i

– The heuristic for attribute X, threshold Vi can be 
computed from the values 
d1,yes,…,dk,yes,d1,no,…,dk,no
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AttributesAttributes withwith UnknownUnknown ValueValue

• If the training set contains examples with one or more 
attributes unspecified

• For example
<?,72,90,T,P>

• How do we take into account this example when 
computing the heuristic and when splitting the 
example set?
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AttributesAttributes withwith UnknownUnknown ValueValue

• Test evaluation: 
– Consider a discrete attribute X with n values {x1,…,xn}
– Let F be the set of examples of T that have X known
– F provides us with a distribution of examples into values and 

class P(xi,Cj)
– We assume that the unknown values have the same 

distribution P(xi,Cj) with respect to the attribute and the class 
– Therefore the examples with unknown values do not alter 

the value of the entropy or of the Gini index
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AttributesAttributes withwith UnknownUnknown ValueValue

• Entropy of the partitioning: the unknown value is
considered as a value of its own

• Let Tn+1 be the set of examples of T with unknown 
value for X
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AttributesAttributes withwith UnknownUnknown ValueValue

• c4.5 further penalizes attributes with unknown values 
by multiplying the gain by the probability that the 
attribute is known

• If F is the set of examples of T with X known

))()(()( FHFH
T

F
Xgain X−×=
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ExampleExample

• Suppose that in the example database the case D6 :
Outlook=overcast, Temperature=72, Humidity=90, Windy=T

• is replaced by
Outlook=?, Temperature=72, Humidity=90, Windy=T

• The frequencies of Outlook over F are

1358Total

523Rain

303Overcast

532Sunny

TotalDon’t PlayPlayOutlook
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ExampleExample

• H(F)=-8/13*log2(8/13)-5/13*log2(5/13)=0.961
• HOutlook(F)=5/13*(-2/5*log2(2/5)-3/5*log2(3/5))

+3/13*(-3/3*log2(3/3)-0/3*log2(0/3))
+5/13*(-3/5*log2(3/5)-2/5*log2(2/5))
=0.747

• gain(Outlook)=13/14*(0.961-0.747)=0.199 (slightly 
less than before)

1358Total

523Rain

303Overcast

532Sunny

TotalDon’t PlayPlayOutlook
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ExampleExample

• H(Outlook)=-5/14*log2(5/14)-3/14*log2(3/14)-
5/14*log2(5/14)-1/14*log2(1/14)=1.809

• gainratio(Outlook)=0.199/1.809=0.110
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PartitioningPartitioning

• In which subset of a node with test on X do we put an 
example with X unknown?

• Partitioning is generalized in a probabilistic sense: 
– Each example of T is assigned a weight, initially 1
– Each example is inserted in every subset Ti with a 

weight
• If we partition on discrete attribute X

– If example e, with weight w in T, has X=xi, e is put 
in Ti with weight w and in Tj with j≠i with weight 0

– If example e, with weight w in T, has X=?, e is put 
in Ti with weight w × P(xi)

– P(xi) can be estimated by relative frequency in F

63

Example Example 

• Partitioning according to Outlook
• No problem for the 13 cases of F 
• Example D6 is assigned to sets Tsunny, Tovercast and 

Train with weights 5/13, 3/13 e 5/13 respectively
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ExampleExample

• Consider Tsunny
No Outlook Temp     Humidity  Windy    Class Weight
D1 sunny 75 70 T P 1
D2 sunny 80 90 T N 1
D3 sunny 85 85 F N 1
D4 sunny 72 95 F N 1
D5 sunny 69 70 F P 1
D6 ? 72 90 T P 5/13

• If Tsunny is partitioned on Humidity with threshold 75, 
we get the following distribution:

– Humidity ≤ 75 2 class P, 0 class N
– Humidity > 75 5/13 class P, 3 class N
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ExampleExample

• The second subset still contains examples from two 
classes but no test produces two subsets with at 
least two examples=> stop

Outlook=sunny

| Humidity ≤ 75: P (2.0) 
| Humidity > 75: N (3.4/0.4)

Outlook=overcast: P (3.2)
Outlook=rain

| Windy=True: N (2.4/0.4)
| Wndy=False: P (3.0)
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Output Output InterpretationInterpretation

Numbers (A/B) associated to leaves
• A=total weight of examples associated to the leaf
• B=total weight of examples associated to the leaf that

are misclassified
• For example

N (3.4/0.4)
• Means that 3.4 cases belong to the leaf of which 0.4 

do not belong to class N
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Classification of Unseen Cases with All Classification of Unseen Cases with All 
Values KnownValues Known

• An unseen (new) case e with all attributes known is 
classified by
– Traversing the tree from the root by following the 

branches that correspond to the values of the 
case

– Suppose that the leaf
Pos (A/B)

– is reached, then e is classified as Pos with 
probability (A-B)/A and Neg with probability B/A

– In the case of more than two classes, the 
distribution of examples into classes at the leaf is 
used
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Classification of Unseen Cases withClassification of Unseen Cases with
UnkownUnkown ValuesValues

• If e has X unknown
• e is associated with a weight w, initially set to 1
• When traversing the tree, if the attribute at the current 

node is unknown in e we explore all subtrees.
• Subtree Ti is explored by assigning e to Ti with weight 

w × P(x
j
)

• P(x
j
) is estimated by considering by relative 

frequency over T
• The information about relative frequencies are stored

in the leaves that are descendants of T



69

Classification of Unseen Cases withClassification of Unseen Cases with
UnkownUnkown ValuesValues

• In the end more than one leaf will be reached
• Let L be the set of leaves that are reached
• Let wl be the weight of e that reaches l
• Let P(Cj|l) be the relative frequency of examples in l 

belonging to class Cj

• Then

∑
∈

×=
Ll

jlj lCPweCP )|()|(
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ExampleExample

• Unseen example e
Outlook=sunny, Temperature=70, Humidity=?, Windy=F

• Outlook=sunny => first subtree
• Humidity=?=> we cannot determine whether 

Humidity ≤ 75
• We follow both branches with weights

– Branch Humidity ≤ 75: w=2.0/5.4=0.370
– Branch Humidity > 75: w=3.4/5.4=0.630
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ExampleExample

• Leaf humidity ≤ 75:
– P(P|l)=100%
– P(N|l)=0%

• Leaf humidity > 75
– P(N|l)= 3/3.4=88%
– P(P|l)= 0.4/3.4=12%

• Overall we get
– P(P|e)=0.370*100%+0.630*12%=44%
– P(N|e)=0.630*88%=56%
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OverfittingOverfitting

• A hypothesis overfits the data when there exists a 
simpler hypothesis less accurate on the training set 
but more accurate on the universe

• It may happen when the training set contains errors 
or when the training set is small
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OverfittingOverfitting
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OverfittingOverfitting

• Example: consider the previous training set plus
<sunny,80,70,strong,N>

• which should be positive but it is erroneously 
classified as negative

• The tree h’ learned from the new training set is more 
complex than the tree h learned from the original 
training set

• However, since the new example is incorrect, h’ will 
make more mistakes than h on U

75

ApproachesApproaches toto AvoidAvoid OverfittingOverfitting

• Stop the growth before reaching a tree that perfectly 
classifies the training examples (prepruning)

• Grow the tree and prune it afterwards (postpruning)
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How to Determine the Optimal Dimension of How to Determine the Optimal Dimension of 
the Treethe Tree

• Using a separate example set for evaluating the tree 
(“training and validation set” approach)

• Using all the available examples for training but using 
a statistical test to decide whether to keep a node or 
not

• Using an explicit measure of the complexity of 
encoding the tree and the examples that are 
exceptions and choose a tree that (locally) minimizes 
this measure (minimum description length principle)
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Observation on c4.5 SearchObservation on c4.5 Search

• c4.5 performs a hill-climbing search in the space of 
possible trees from the simplest hypothesis towards 
more and more complex hypothesis

• The space of all possible trees is equivalent to the 
powerset of the set of examples so the target concept 
is surely included in the search space

• c4.5 mantains only a single hypothesis during the 
search and does not perform backtracking, so it may 
find a solution only locally optimal
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Observations on c4.5 SearchObservations on c4.5 Search

• c4.5 uses all the training examples in each step for 
deciding how to refine the tree differently from other 
methods that make decisions in an incremental way 
on the basis of individual examples. As a result, c4.5 
is less sensible to errors in single examples.
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Useful LinksUseful Links

• C4.5
http://www.rulequest.com/Personal/
C source code 

• Weka: open source suite of machine learning 
algorithms written in Java

http://www.cs.waikato.ac.nz/ml/weka/
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