
Hybrid Web Service Composition:
Business Processes Meet Business Rules

Anis Charfi, Mira Mezini

Darmstadt University of Technology
D-64289 Darmstadt, Germany

{charfi,mezini}@informatik.tu-darmstadt.de

ABSTRACT
Over the last few years several process-based web service
composition languages have emerged, such as BPEL4WS and
BPML. These languages define the composition on the basis of a
process that specifies the control and data flow among the services
to be composed. In this approach, the whole business logic
underlying the composition including business policies and
constraints is coded as a monolithic block. As a result, business
rules are hard to change without affecting the core composition
logic.

In this paper, we propose a hybrid composition approach: The
composition logic is broken down into a core part (the process)
and several well-modularized business rules that exist and evolve
independently. We also discuss two alternative technologies for
implementing business rules in encapsulated units, using aspects
and a rule-based engine. Our approach allows for a more modular
and flexible web service composition.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and
Retrieval– Online Information Services: Web-based Services

General Terms
Design, Management, Languages

Keywords
Web Service Composition, Business Rules, Aspect-oriented
Programming, Modularity

1. INTRODUCTION
Web services embody the paradigm of Service-Oriented
Computing [1]: Applications from different providers are offered
as services that can be used, composed, and coordinated in a
loosely coupled manner. Individual web services are capable of
providing some functionality on their own but the greater value is

derived by combining several web services to establish more
powerful applications. For example, a travel web service can offer
full vacation packages by combining several elementary web
services such as flight, hotel and car rental.

Several workflow-based composition languages have emerged to
express web service compositions, such as the Business Process
Execution Language for Web Services (BPEL4WS or BPEL for
short) [2], WSCI [3], BPML [4]. These languages define a
business process that determines the logical dependencies
between the composed web services. The process specifies the
order of invocations (control flow) and rules for data transfer
between them (data flow).

In this paper, we argue that this process-based approach to web
service composition exhibits important shortcomings with regard
to support for integration of business rules. We will focus on
BPEL since this is becoming a standard language for web service
composition.

According to the Business Rules Group [5], a business rule is a
statement that defines or constrains some aspect of the business. It
is intended to assert business structure or to control the behavior
of the business [5]. Business rules are usually expressed either as
constraints or in the form if conditions then action. The
conditions are also called rule premises. The business rule
approach encompasses a collection of terms (definitions), facts
(connection between terms) and rules (computation, constraints
and conditional logic) [6]. Terms and Facts are statements that
contain sensible business relevant observations, whereas rules are
statements used to discover new information or guide decision
making.

Business rules are especially useful in decision and policy-
intensive business domains such as the finance and insurance
sectors. They provide a means to express, manage and update
pieces of business domain knowledge independent of the rest of
the application. A business rule system is a system in which the
rules are separated logically and perhaps physically from the other
parts.

Let us now shortly consider the aforementioned shortcomings of
BPEL – as a representative of process-oriented web service
composition languages – in modeling business rules affecting
compositions of web services. The problem is that the whole
business logic underlying a web service composition is expressed
as a monolithic block, namely the process specification. Each
business constraint or business policy that must be enforced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSOC'04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011...$5.00.

30

throughout the process has to be expressed in terms of activities
and must be integrated with the process specification. Such
processes are not modular, complex, and hard to maintain;
especially, in policy-intensive web service composition, they
contain plenty of nested conditional activities (<switch>, <case>)
that model decision-making points in the process. The lack of
process modularity hampers reusability: Since all the business
logic is defined in one unit, it is not possible to reuse parts of it.

Another problem is the lack of flexibility: Process-oriented
languages assume that the composition is predefined and does not
evolve: The only way to accommodate change is by modifying the
process definition; hence, there is no support for dynamic process
change. Flexibility and adaptability are very important features,
especially in the highly dynamic context of modeling business
rules for web services: Organizations involved in a web service
composition may often change their business rules, their partners,
and their collaboration conditions.

The lack of flexibility is tightly related to the lack of modularity:
If we can break down the business logic underlying the
composition into several parts or modules, the composition
becomes more flexible since each of these parts can evolve
independent of the rest. This motivates the need for a more fine-
grained approach; with appropriate support, parts of the
composition logic can be created, modified or deleted dynamically
at runtime. To achieve these goals, we investigate a hybrid
approach, which combines business processes as known e.g., from
BPEL with business rules [5].

The idea is that the core composition specification only defines
the basic control and data flow between the services to be
composed using process-based approaches. Policy-sensitive
aspects of the composition, i.e., business rules that are subject to
change are modularized in separated units. This way, when
business policies change, we only have to modify the
corresponding units that modularize the implementation of the
business rules. Moreover, this separation reduces the complexity
of the composition and boosts the adaptability.

Presuming some analysis phase as the result of which business
rules are identified and specified in the form of if/then statements,
we focus on the implementation phase where rules are
implemented in a modularized way with some specific
technology. To this end, we consider two alternatives.

The first alternative is to employ aspect-oriented programming
(AOP) for modularizing the implementation of the business rules.
The implementation of the business rules tends to cut across
several activities of a process definition; AOP provides means to
modularize crosscutting concerns and has already been found
valuable for modularizing business rules of object-oriented
software [7]. We will indicate how concepts from the business
rules world relate to AOP concepts and will outline how business
rules can be implemented in our aspect-oriented extension of
BPEL, called AO4BPEL [8]. As part of our investigation of the
aspect-oriented approach embodied in AO4BPEL we will also
indicate its limitations.

The second alternative for modularizing the implementation of
business rules is to combine the process-based specification of

service composition with dedicated approaches to declarative
specification of business rules, such as Java Expert System Shell
Jess [9] and JRules [10]. We refrain from a pure rule-based
approach in which the entire composition logic is specified in the
form of business rules: Such an approach is not appropriate
because there would be no global view of the composition.

We consider business rules as part of the implementation of web
service compositions i.e., they are comparable with executable
business processes in BPEL4WS. Unlike abstract business
processes in BPEL, which specify business protocols, business
rules in our approach are not intended to be published among
partners. They are not visible for external partners who use the
resulting composite web service.

The remainder of the paper is organized as follows. In section 2,
we briefly introduce process-based web service composition with
an example in BPEL4WS. In section 3, we outline our hybrid
composition approach and discuss the alternatives for modular
implementation of business rules: Using AO4BPEL and an
integration of a rule-based system with an orchestration engine. In
section 4, we report on related work. Finally, we conclude by
highlighting our contribution and outlining areas of future work in
section 5.

2. BUSINESS RULES AND PROCESS-
BASED WEB SERVICE COMPOSITION
After a brief overview of both process-oriented languages
represented by BPEL and of the notion of business rules, this
section discusses the problems of process-oriented languages with
respect to modeling business rules.

2.1 Process-Oriented Composition Languages
Process-oriented composition languages such as BPEL4WS [2]
and BPML [4] glue web services together by means of a process
model. The latter specifies the interactions among web services as
a workflow; it determines the order of these interactions (control
flow) and manages the data exchanged by the participating
services (data flow).

The building blocks of a process are called activities or tasks. An
activity in BPEL4WS is either primitive such as <invoke> or
structured such as <sequence>. Structured activities manage the
overall process flow and the order of the primitive activities. For
this purpose, BPEL4WS defines control structures such as loops,
conditional branches and parallel execution. Variables and
partners are other important elements of BPEL4WS. Variables
are used for data exchange between activities whereas partners
represent the external web services that interact with the
composite web service.

A typical example for a composite web service is a travel agency
scenario where a travel package is created by aggregating hotel
and flight web services. Listing 1 shows a sample process
specification for such a composition in BPEL. This process
invokes the partner web services airline and hotel sequentially. A
full vacation package is generated from the return values of these
invocations and returned to the client.

31

<process name = "FullTravelPackage" …/>

 <sequence>

 <receive partner="client"

 operation="getTravelPackage"

 variable="request"

 createInstance="yes" …/>

 …

 <sequence>

 <invoke partner="airline"

 operation="getFlight"

 outputVariable="flightout"/>

 <invoke partner="hotel"

 operation="getRoom" …/>

 </sequence>

 <assign>…</assign>

 <reply partner="client"

 operation="getTravelPackage"

 variable="proposition" …/>

 </sequence>

</process>

Listing 1. A travel process

2.2 Business Rules
In a real-life travel agency, many business rules and constraints
need to be integrated into the simple process of listing 1, such as
“if no flight is found for the dates given in the client request, do
not search for accommodation (R1)”. Other rules relate to pricing
policies, such as “if more than two persons travel together, the
third one pays half price (R2)”.

There are several classification schemas for business rules.
According to [6], there are four kinds of business rules:

• A constraint rule is a statement that expresses an
unconditional circumstance that must be true or false
e.g., a vacation request must have a departure airport
and a destination airport.

• An action enabler rule is a statement that checks
conditions and upon finding them true initiates some
action e.g., if no flight is found, do not look for
accommodation.

• A computation rule is a statement that checks a
condition and when the result is true, provides an
algorithm to calculate the value of a term e.g., if more
than 2 persons travel together, the third pays only half
price.

• An inference rule is a statement that tests conditions
and upon finding them true, establishes the truth of a
new fact e.g., if a customer is frequent customer, he gets
a discount of 5 %.

A business rule system puts special emphasis on the expression,
management and automation of rules. The STEP principles of the
business rules approach [6] are: Separate, Trace, Externalize and
Position rules for change. We focus on business rules that are
relevant to web service composition: i.e., either the condition or

the action or both parts span several web services. For instance,
the business rule, “if no flight is found for the dates given in the
client request, do not search for accommodation” involves three
web services: The airline and the hotel web service as well as the
composition itself.

2.3 Integrating Rules in BPEL Processes
Business rules can be integrated with the process by adding
activities. For example, in order to implement the rule R1 in
BPEL, we add a <switch> activity which branches to the hotel
activity only if a flight has been found previously. For rule R2, we
need to find the activity where price calculation takes place and
then insert several probably nested <switch>/<case> activities. In
Listing 1, the price calculation is handled by the <assign>
activity, which generates the vacation propositions.

The implementation of business rules becomes, however, more
difficult if the condition part of the rule requires some logical
derivation. This is the case in the following rule: If a customer is
frequent, (s)he qualifies for a discount of 5% on the package price
(R3). In order to check whether a customer is frequent, we need to
look at the other rules and perform additional computation, e.g.,
by invoking a web service façade of a database with customer
information.

Furthermore, price calculation might also include service fees, for
the calculation of which several policies can be thought of. There
might be a flat-rate fee per request, as it is often the case with
travel portals available today. Other policies can be to charge a fee
per each product bought, or per database access performed during
the booking process, etc. One can also enable clients to choose a
policy that best fits their usage profile.

Considering such more sophisticated examples, we observe that
the problems of implementing business rules in procedural and
object-oriented languages [7][11] also arise in process-oriented
languages. These problems are: (1) manually ordering and
merging the conditional statements into one application flow, (2)
loss of identity of the rules, and (3) dealing with the impact of
changing one single rule. In the following, we elaborate on these
problems.

Problems (1) and (2) can be traced down to the lack of modularity
in the implementation of business rules. Let us illustrate the issue
by our example of pricing policies. Even if we are able to use
some externalized web service that encapsulates the state needed
for price calculation and provides operations for manipulating this
state, these operations will need to be triggered in various places
of the travel booking processes. That is, the decision about
``where'' and ``when'' during the booking flow to trigger the
pricing functionality is not encapsulated in a separate unit.

In fact, by its virtue of constituting a protocol between operations
of the travel booking process and the pricing service, the code that
is responsible for invoking the latter cannot be modularized in a
process-based decomposition: It rather cuts across the modular
process-based structure of the travel service composition. That is,
implementing business rules effects, in general, sets of points in
the execution of the web service composition which transcend
process boundaries.
At present, BPEL does not provide concepts for crosscutting
modularity [12]. This leads to tangled and scattered process

32

definitions: One process addresses several concerns and the
implementation of a single concern appears in many places in the
process definition. One can envisage that with each new business
rule the process gets more and more complex. Furthermore, the
rules are embedded in the process and they do no longer exist as a
separate unit: It is difficult to extract, control and manage business
rules because they are mapped to activities of the process model.

As a result, the process evolves into a huge monolithic block and
each small change would require a thorough understanding of the
whole process code. For example, if the travel agency changes its
discount policy, it is necessary to extract all the business logic
related to discounts out of the process specification and ensure
that the process is modified consistently and is still correct and
working after the integration of new business rules, or alteration
of existing ones. In the very competitive business context
worldwide, business rules evolve very often [6] as a result of new
partnerships, changing strategies, mergers, etc.

We conclude that process-based composition languages do not
provide support to capture business rules in modular units. In fact,
the primary focus of process-based web service composition
languages is the specification of activities and their ordering
(control flow). The data flow is less important but it is still
necessary for having executable processes. In BPEL, for example,
only few activities are geared towards data management compared
with the activities related to control flow and ordering of
activities. Business rules are pieces of knowledge about the
business and it is not appropriate to bury that knowledge deep in
code where no one can identify it as such [6].

We call for a more straightforward way to express represent and
manage business rules as a separate and externalized part of the
composition. This way, if the discount policy changes, we just
update the corresponding rules or add new ones. This enables us
to modify the composition without understanding the whole
process specification and makes change easier and faster. We also
recognize that a pure rule-based approach is also not appropriate
to capture all the aspects of web service composition. In fact,
understanding the composition becomes very hard if it is
expressed in a multitude of business rules. For these reasons, we
advocate a hybrid approach that combines the paradigm of
process-oriented composition with the business rules approach.

3. HYBRID WEB SERVICE COMPOSITION
Our discussion assumes a methodology for web service
composition which distinguishes two phases, the analysis and the
implementation phase, as illustrated in Figure 1. The analysis
phase is out of the scope of this paper. We merely presume that in
the analysis phase, the web service composition is specified as a
business process and business rules are expressed in a declarative
way. The business process is specified at an abstract level (do not
confuse with abstract processes in BPEL) e.g., using a meta-
language for process-oriented web service composition [13][14].
The latter relies on meta-model providing commonly used entities
within a process definition, such as conditional branching,
sequential and parallel activities, etc. The business rules are stated
in a way, which is very close to how users think and talk. All
business rules are collected in a rule repository.

The focus of our work is the implementation phase. Here, we
propose to keep the separation between processes and business
rules at the implementation level; we propose a technology that
combines some process execution and rule execution technology,
as schematically shown in Figure 1. That is, for the
implementation, we have to select a language for the process
specification and a concrete technology to implement and manage
business rules. For the process we can e.g., choose BPEL and a
compliant orchestration engine. We create an executable process
by refining the abstract process of the analysis phase.

In this paper, we discuss two approaches for implementing
business rules. One way is by using aspect-oriented programming
[15] and encapsulating rules into aspect modules. To this end, we
will investigate how business rules can be implemented in an
aspect-oriented dialect of BPEL we have developed, called
AO4BPEL [8]. Alternatively, we will briefly consider using a rule
engine as the rule implementation technology [10][16].

Independent of the implementation technology used for the
business rules, the key point is that in the approach schematically
shown in Figure 1, business rules are a separate, externalized
logical part of the composition. This has several advantages.

Once business rules are expressed explicitly as first-class entities,
they can be reused across several compositions i.e., the same rule
can be applied to many web service compositions. As a result,
enterprise-wide business rules, as opposed to process-wide
business rules, can be implemented more easily. A further
advantage of separating business rules is that they can change
independent of each other and of the rest of the composition.

This increases the flexibility of the composition especially if we
take into account the fact that business rules tend to change more
often than the rest of the composition [17]. R.G. Ross states “The

abstract
process

rules

rule repository

orchestration engine

concrete
process

Analysis

 Implementation

rule implementation
technology

Integration of rules and process technologies

web service composition

Figure 1. Hybrid composition approach

33

most significant changes do not come from re-engineering
workflow, but from rethinking rules” [18]. This implies that by
supporting change at the business rule level, we cover many
adaptability requirements of the composition. With appropriate
tool support, business rules can even be modified at runtime,
enabling a configurable and dynamic web service composition.
Thus, dynamic business rules turn out to be important instruments
of adaptability.

3.1 Business Rules with AO4BPEL
This sub-section discusses an implementation of business rules
based on aspects. We first give a short introduction to AO4BPEL,
an aspect-oriented dialect of BPEL that we have developed. Next,
we explain why aspect-oriented programming is a suitable vehicle
for modeling business rules. Finally, we show by means of
examples how business rules can be implemented in a
modularized way in AO4BPEL.

3.1.1 Introduction to Aspects and AO4BPEL
AO4BPEL is an aspect-oriented extension to BPEL4WS that
allows for more modular and dynamically adaptable web service
composition [8]. Aspect-Oriented Programming (AOP) [15] is a
paradigm that addresses the issue of modularizing crosscutting
concerns - concerns whose implementation cuts across a given
modular structure of the software resulting in code tangling and
scattering [12]. Canonical examples of such concerns are
authorization and authentication, business rules, profiling, object
protocols, etc. [19].

AOP introduces units of modularity called aspects to overcome
the inherent problem of code scattering and tangling due to
crosscutting concerns in complex systems. Aspects associate sets
of join points - well-defined points in the process execution - with
additional behaviour defined in an advice. In AO4BPEL, each
activity is a potential join point.

A collection of related join points is identified by a pointcut – a
query over joint points. That is, a pointcut specifies the
crosscutting structure of a concern and advice associate
behavioural effect to this structure. The pointcut language of
AO4BPEL is XPath [20]. That is, XPath expressions are used to
select the activities where the advice code should be executed.
Pointcuts can span several processes.

An advice in AO4BPEL is a BPEL activity that specifies some
crosscutting behavior that should execute at certain join points.
Like AspectJ [21], we support before, after and around advices.
That is, the behavior defined in an advice can be executed before,
after or instead a join point activity. The around advice allows
replacing an activity by another.

The activity of integrating aspects into base functionality is called
weaving. A weaver is a tool that integrates a base program’s
execution with aspects. In the case of AO4BPEL, the base
program is the BPEL process. AO4BPEL supports dynamic
weaving, i.e., aspects can be deployed or un-deployed at process
interpretation time. We have implemented AO4BPEL as an
aspect-aware orchestration engine for BPEL. This engine is both
the aspect weaver and the process interpreter, i.e., with this

engine, we can implement the composition without requiring an
additional component to integrate the process engine and the
business rules technology (cf. Figure 1).

3.1.2 Aspects and Business Rules
Aspects also feature the if/then flavor of business rules. They
answer two questions: when and what: Join points specify when
crosscutting functionality is required in the execution of the base
program; advice captures that crosscutting functionality (what).
Business rules also answer the same questions. The condition part
of the rule answers the question when certain conditions are
fulfilled, whereas the action part answers the question what action
must be performed. We also put forward the analogy between the
base program in AOP and, terms and facts in the business rule
approach: conditions are statements over facts and terms like the
pointcuts are statements over the static or dynamic structure of the
base program.

To justify our claim that AO4BPEL is appropriate to implement
business rules, in the following, we go through the different kinds
of business rules and explain how each of them can be expressed
by means of aspects in AO4BPEL.

The action enabler rules can be implemented in a straightforward
way. Action enablers test conditions formulated on facts and
terms and upon finding those true initiate some activity. In our
case, facts and terms are partners, variables, and activities. We
have to identify all those activities in the process where the facts
or terms used in the condition change in such a way that the
condition may become true. The action part of the rule can be
expressed as an activity.

For example, in order to implement the rule R1 - if no flight is
found, do not look for accommodation - we first find out which
activities and variables relate to the condition part. In the BPEL
process whose definition was shown in Listing.1, these are the
<invoke> activity, which calls the airline web service and the
variable flightresponse that holds the return value of the
invocation. The action part of R1 affects the <invoke> activity of
the accommodation procurement. So, the action is equivalent to
skipping the invocation of the hotel web service.

The condition of the rule R1 is equivalent to the condition: “if
after invoking the airline web service, the flightresponse is null”.
Since the value of the variable flightresponse remains unchanged
until the invocation of the hotel web service, the whole rule can
be rewritten as if before invoking the hotel web service the
variable flightresponse is null, skip this invocation. In AO4BPEL,
this rule can be implemented by the aspect shown in Listing 2.

In this aspect, the action part of the business rule is expressed as
an around advice activity, which is executed instead of the
activity captured by the pointcut. The join point where the advice
is weaved is the <invoke> activity that calls the hotel web service.
The advice code is expressed as a <switch> activity. If
flightresponse is null the around advice branches to the activity
<empty>; otherwise, it branches to the original <invoke> activity.
The <proceed> keyword denotes the original activity captured by
the pointcut.

34

<aspect name= "if no flight found, do not
search hotel">

<variables>…</variables>

<pointcutandadvice type= "around">

<pointcut name="hotel procurement">
//process[@name="FullTravelPackage"]
//invoke[@portType="hotelPT"and
 @operation="getRoom"]
</pointcut>

<advice>

 <switch>

 <case condition="bpws:getVariableProperty

 (flightresponse,isnull)=1">

 <empty/>

 </case>

 <otherwise>

 <proceed>

 </otherwise>

 </switch>

 …
</advice>

</pointcutandadvice>

</aspect>

Listing 2. Business rule as an aspect

Constraints are business rules that declare restrictions on some
data e.g., R4: a vacation request must contain a departure and
destination airports. In order to implement a constraint in
AO4BPEL, we identify the activities where data is manipulated by
the process or exchanged between the process and its partner web
services. To enforce the constraint R4 we define a before advice,
which executes before the <receive> activity shown in Listing1.
The advice tests the variable request and if departure and
destination airports are not specified a fault can be thrown using
the <throw> activity. Other kinds of constraints can be
implemented by identifying the data handling activities in the
process where the value of some data changes. For more examples
of how to use aspects to enforce constraints see [19].

We look now at computation rules. These are statements that
check a condition and provide an algorithm upon finding it true
e.g., R2: if more than two persons travel together, the third pays
only half price. We first consider the condition part of the rule
and identify which activities and variables in the process are
related to it. The number of persons is contained in the client
request to the process of Listing 1. So, the condition is equivalent
to if the part numberOfPassengers of the variable request is
greater than 2. The variable request is used by the <receive>
activity.

The action part of the rule R2 can be implemented as an after
advice, which executes after the pricing activity. The pricing
activity takes place after accommodation procurement. It
calculates the price of the vacation package by summing up the
price of the flight and hotel and the profit of the travel agency.

The price information is part of the response messages of the
partner web services. The rule R2 can be implemented as an
aspect that declares a pointcut capturing the pricing activity and
an after advice that modifies the price if more than 2 persons
travel together. The transformation of the price data can be
handled by means of an <assign> activity.

The fourth kind of business rules [6] are inference rules e.g., R3:
if a customer is frequent, (s)he qualifies for a discount of 5 %.
This kind of rule is more difficult to implement, because it
requires logic-based reasoning. We need to resolve the condition
part using other business rules. Therefore, we have to look for the
business rules that specify when a customer is frequent. Let us
assume that we find two rules that answer this question. The first
one is R5: if a customer has bought more than 5 travel packages,
he is a frequent customer and the second one is R6: if a customer
has bought products for a sum exceeding 4000 euros, he is a
frequent customer. The rule R3 can then be written as two rules
without inference, which we will have to implement as explained
before. The situation becomes more complex if either R5 or R6
was an inference rule that again must be resolved. The case of
inference rules shows that a business rule engine would
drastically ease rule management, since it automatically handles
the logical rule dependencies.

So far, we saw that all kinds of business rules can be implemented
by means of aspects in AO4BPEL. In this implementation,
business rules are separated from the rest of the composition
(process) not only logically but also physically. Each aspect can
be defined in a separate file. In the analysis phase, business rules
are expressed declaratively as if/then statements. In the
implementation phase, each business rule is mapped to an aspect
in AO4BPEL. Since AO4BPEL supports dynamic weaving,
business rules can be activated or deactivated dynamically at
process interpretation time. In this way, we adapt the composition
to changing business policies and avoid disruptive change.

Before concluding this part, we would like to draw the attention to
a fine difference between business rules and aspects with respect
to the way conditions or pointcuts are specified. Business rules
declaratively define conditions on data by saying what the state
should be like in order for the action to fire, whereas aspects in
AO4BPEL say how we can come to this state. The condition part
of a business rule consists of patterns that match facts and not
method calls or field access operations. That is, with AO4BPEL
pointcuts rules are specified at a lower level of abstraction. We
will return to this issue at the end of Sec. 3.2.

3.2 Issues in Using a Rule Based Engine
As already discussed, business rules can be implemented using
aspects in AO4BPEL but the programmer still has to implement
the rules himself and understand the interactions of the rules with
the process. In addition, the programmer must also manage all the
rules. This includes rule dependencies, checking rule consistency,
combining rules, solving conflicts when two rules have the same
conditions or overlapping conditions, etc.

As indicated in [7], the manual expression of all rule
combinations is a cumbersome endeavour. We already mentioned
that inference rules are especially hard to implement as aspects
because they require logical reasoning and combination of rules.

35

For example, if we have two rules R: if A then B and R’: if B then
C, we would like to have an intelligent tool that automatically
derives the rule R’’: if A then C. This kind of logical reasoning is
called inference.

Rule management can be performed by a business rule engine,
thus letting the composer focus on process implementation. A rule
engine is a component that applies business rules to application
data (the process activities and variables) in a highly optimized
way. The rules are stated in the declarative if/then form and are
executed by the engine i.e., the rule implementation is generated
by the rule engine and the programmer does not need to care
about it. The rule engine controls the selection and activation of
rules automatically. The working memory is a component of a rule
engine that contains the data on which the rules operate. In the
case of web service composition, the working memory would
contain the process data and its runtime information.

Some rule technologies [9][10] can even generate code out of
some high-level declarative specification of business rules. This
provides for more simplicity. Business rules are specified in a
declarative way, in a plain language, and independent of any
technology. They are also self-documenting. This offers improved
visibility to programmers and non-technical business people and
enables them to change the composition without worrying about
all process details.

We are aware of the fact that the simplicity from the user
perspective is accompanied by an increasing complexity of the
underlying orchestration engine. The execution of the processes
becomes more complicated because it must also be integrated with
the implementation of the business rules. This is the function of
the integration layer shown in Figure 1.

There are two formalisms behind rule-based systems: production
rules [22] and first-order predicate logic. Several systems use
these formalisms to integrate a rule-based language with object-
oriented languages like Java. The most notable ones are Jess [9],
JRules [10] and Java SweetRules [23].

However, these systems are not appropriate for process-based web
service composition. What is needed is a tight integration between
rule-based languages and web service composition languages in
order to be able to use activities, variables and partners as terms
and facts in the rule language. To the best of our knowledge, there
is no hybrid system integrating rule-based language and process-
based service composition yet. Such a hybrid system is not among
the contributions of this paper, either. In what follows, we simply
consider some issues that arise and need to be carefully
investigated when undertaking such an endeavor. We are
considering these issues in our ongoing work.

Similarly to the many hybrid systems available today integrating
rule-based and object-oriented paradigms [7], there are two
possible ways to integrate process-oriented and rule-based
paradigms. One way is to adapt one of the languages to be more
compatible with the other by extending e.g., the rule-based
language with process-oriented features, or the other way around.
The second way is to enhance one of the languages with an
interface to the other language, so that the features of the latter
can be used in programs written in the former.

As argued in [7], both approaches suffer from the lack of seamless
integration. In either approach, there is paradigm mismatch which
the programmer is confronted with. The programmer modeling the
core composition logic using a process-based language is
confronted with constructs of a rule-based language, or vice-versa.
In this regard, an implementation of our hybrid composition
approach by a hybrid system integrating a rule-based language
with a process-based web service composition language is inferior
to the aspect-oriented implementation. Using an aspect-oriented
dialect of BPEL for the definition of the business rules as
discussed in the previous subsection has the advantages of
consistency for process authors. In addition, the verification of the
properties of the resulting composition would be easier if the
same paradigm is used, i.e., in our case activities for both process
and advice specification.

There are two alternatives for addressing the integration of a rule
based system with a process interpreter. The first alternative
would be to adapt to the web service composition context the
approach presented in [7] for integrating rule-based and object-
oriented languages. The basic idea is to have the core composition
be modeled as a BPEL process and business rules be modeled in a
rule-based language. Aspect-oriented concepts would then be
used to specify how to map process model specifications and rule
specifications behind the scenes.

More promising, though, seems to investigate using a more
expressive pointcut language with aspects, such as the one used in
the aspect-oriented language ALPHA [24]. Alpha uses Prolog
[25] as the pointcut language, i.e., pointcuts are Prolog queries
operating on rich models of program execution as diverse as the
AST, the execution trace, and the object graph model. In the
future, we will investigate how well business rules can be
modelled in ALPHA and in case of promising results we will
consider integrating a similar pointcut language in AO4BPEL.

4. RELATED WORK
A lot of research work is being conducted in the area of web
service composition. Most of this work focuses on process-based
composition. The originality of this paper lies in the use of
business rules as an integral part of the composition logic.

In [13], Yang et al., present a rule-based approach to the
composition lifecycle. They introduce a phased approach to the
development process of service compositions. Their approach
spans abstract definition, scheduling, construction, execution and
evolution. They specify the composition using a process in BPEL
or a similar language. Unlike our idea, they consider only phase-
related business rules e.g., resource selection constraints or
runtime constraints. Their objective is to make the lifecycle of the
composition more flexible. In our work, business rules are part of
the composition itself and not just used as instruments to support
the composition lifecycle.

Several rule-based systems have been integrated with object-
oriented languages. In [7], the author uses aspects to implement
rules in object-oriented languages and then show several
shortcomings of such an approach. Instead, she proposes using
aspects for the purpose of integration. With aspects, she separates
and encapsulates the connection of business rules to the core
application in order to achieve high flexibility and reusability.

36

Aspect-oriented languages encapsulate the connector code. In our
work, we highlighted the similarities of business rules and aspects
and considered AOP as an implementation technology for
business rules and not as a connection technology between rules
and processes. Some of the shortcomings presented in [7] are also
present in the field of process-based composition web service
composition but they do not fully apply because of the distributed
and loosely coupled nature of web services.

In [26], the authors compare Event Condition Action rules (ECA)
in the area of active data base with aspects in AspectJ and they
have identified several commonalities. ECA rules can be seen as
a subset of business rules because business rules do not
necessarily require a database. Moreover, ECA rules are not
adequate to express constraints and inference. Business rules are
present in different areas e.g., in object-oriented applications, in
relational databases and in workflow management systems [27].
They also come in various flavors either as production rules,
integrity rules in SQL, ECA-rules, logic rule like in Prolog, etc.

Some Business Process Management software already offers rule
support e.g., the Corticon Decision Management Platform [28]
allows users to specify business rules that apply to a workflow.
Since process-based composition is also a kind of workflow, we
think the same approach can be also applied in the context of web
service flows.

5. CONCLUSION AND FUTURE WORK
In this paper, we applied the divide and conquer principle to web
service composition by explicitly separating business rules from
the process specification. The combination of the business rules
approach with the process-oriented composition solves a twofold
problem. First, we provided a solution to the problem of dynamic
adaptation of the composition. In fact, current standards for
process-based web service composition are not capable to deal
with the flexibility requirements of composite web services.
Second, business rules are important assets of a business
organization that embody valuable domain knowledge. So, it is no
longer acceptable to bury them in the rest of the composition.

Our hybrid approach allows for a more understandable web
service composition by reducing complexity and avoiding
monolithic composition. Each part of the composition logic is
expressed in the more suitable way either as a business rule or as a
process activity. We call for an approach which consists of two
phases: In the analysis phase business rules are discovered and
expressed declaratively and the process is specified in an abstract
way. In the implementation phase, the process is defined in a
specific language and the business rules are implemented with
some technology that needs to be integrated with the process
orchestration engine.

We outlined the similarities between aspects and business rules
and explained how business rules can be implemented using
AO4BPEL and our aspect-aware orchestration engine. This
engine plays the role of an integration technology for business
rules and BPEL processes. We also mentioned that a rule engine
is an attractive alternative to implement business rules because it
takes on rule management. In the future, we will focus on the
following issues. First, we will consider in what extent we can

apply aspect composition techniques to resolve conflicting
business rules. Second, we will investigate the possibility to
generate aspects automatically from business rules. Third, a
methodology is needed to distinguish the parts of the composition
that should be specified as business rules from those that should
be specified as process activities. Last but not least, we plan to
investigate the alternative of using a rule-based engine as the base
technology to which business rules are mapped. As indicated, this
alternative would provide direct support for rule management and
composition. The issue that remains to be solved in this case is the
integration of a rule engine with the process engine. In the vein of
the work presented in [7], an approach to consider is to use
aspect-oriented technology for implementing this integration.

6. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful
suggestions. We also thank all members of the Software
Technology Group for their comments on earlier drafts of this
paper, and Dimka Karastoyanova for the fruitful discussion on
web service composition.

7. REFERENCES
[1] M. P. Papazoglou, Service-Oriented Computing: Concepts,

Characteristics and Directions, 4th International Conference
on Web Information Systems Engineering (WISE'03) ,
Rome, Italy, 2003.

[2] F. Curbera et. al. Business Process Execution Language for
Web Services, version 1.1, May 2003.

[3] A. Arkin et al., Web Service Choreography Interface 1.0,
W3C, 2002.

[4] A. Arkin et al., Business Process Modeling Language-
BPML 1.0, 2002.

[5] The Business Rules Group, Defining Business Rules, What
are they really? www.businessrulesgroup.org, July 2000.

[6] B. von Halle; Business Rules Applied: Building Better
Systems using the Business Rules Approach, Wiley, 2001.

[7] M. D’hondt: Hybrid Aspects for integrating Rule-based
Knowledge and Object-Oriented Functionality, Phd Thesis,
Vrije Universiteit Brussel, May 2004.

[8] A. Charfi, M. Mezini. Aspect Oriented Web Service
Composition, in Proceedings of the European Conference on
Web Services ECOWS 2004, LNCS 3250.

[9] E.J. Friedmann-Hill, JESS: The Java Expert System Shell,
http://herzberg.ca.sandia.gov/jess/

[10] ILOG JRules, http://www.ilog.com/products/jrules/
[11] P. Jackson, Introduction to Expert Systems. Addison-Wesley,

1986.
[12] H. Masuhara, G. Kiczales. Modeling Crosscutting in Aspect-

Oriented Mechanisms. In Proceedings of ECOOP2003,
LNCS 2743, pp.2-28, Darmstadt, Germany, 2003.

[13] J. Yang, M. Papazoglou, B. Örriens, W. van Heuvel., A Rule
Based Approach to the Service Composition Life-Cylce, 1st
International Conference on Service Oriented Computing
ICSOC, Trento, Italy, 2003.

[14] D. Karastoyanova, A. Buchmann, A Methodology for
Development and Execution of Web Service-based Business

37

Processess, 1st Australian Workshop on Engineering Service-
Oriented Systems, Melbourne , 2004.

[15] Aspect–Oriented Software Development,
http://www.aosd.net

[16] Blaze Advisor Rules Management Technology,
http://www.blazesoft.com

[17] A. Arsanjani. Rule Object 2001: A pattern language for
adaptable and scalable business rule construction, 8th PLoP
conference, Illinois, USA, 2001.

[18] R. G. Ross, Principles of the Business Rules Approach,
Addison-Wesley, 2003.

[19] R. Laddad. AspectJ in Action. Manning Publications, 2003.
[20] XML Path Language 1.0, http://www.w3.org/TR/xpath
[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.

Griswold., Overview of AspectJ, Proceedings of ECOOP
2001, Budapest, Hungary

[22] L. Brownston, R. Farrell, E. Kant, N. Martin., Programming
Expert System in OPS5: An introduction to Rule-based
Programming. Addison-Wesley, 1985.

[23] B. Grosof, Y. Kabbaj,T. Poon, M. Ghande et al., Semantic
Web Enabling Technology (SWEET)

[24] K. Ostermann, M. Mezini, Design and Implementation of
Pointcuts Over Rich Program Models. Technical Report,
Department of Computer Science. Darmstadt University of
Technology, June 2004.

[25] P. Flach, Simply Logical: Intelligent Reasoning by Example.
John Wiley, 1994.

[26] M. Cilia, M. Haupt, M. Mezini, A. Buchmann., The
Convergence of AOP and Active Database: Towards
Reactive Middleware,. 2nd International Conference on
Generative Programming and Component Engineering
(GPCE), 2003.

[27] B. Grosof, H. Boley, Introduction to RuleML, Invited talk at
Joint Committee on Agent Markup Languages, 2002.

[28] Corticon Decision Management Platform,
http://www.corticon.com/html/so_platform.htm

38

