
A logic based approach to interaction design in open multi-agent systems

Marco Alberti Marco Gavanelli
Evelina Lamma

DI, Universit̀a di Ferrara
Via Saragat, 1

44100 Ferrara, Italy
{malberti, mgavanelli, elamma}@ing.unife.it

Federico Chesani Paola Mello
Paolo Torroni

DEIS, Universit̀a di Bologna
V.le Risorgimento, 2
40136 Bologna, Italy

{fchesani,pmello,ptorroni}@deis.unibo.it

Abstract

An important challenge posed by the design of open in-
formation systems concerns the choice of suitable methods
to harness their complexity and to guarantee the correct-
ness of their behaviour. In recent times, logic programming
has been proposed as a powerful technology, formal and
declarative, for the specification and verification of agent
based and open systems. In this work, we focus on the inter-
action design. We base our approach on a logic-based for-
malism, which can be used to define the semantics of agent
communication languages and interaction protocols. We
advocate its use within a more general framework, drawing
a design methodology which encompasses the specification
of the interaction space and of its desired properties, and
their verification.

1. Introduction

The multi-agent computational paradigm is often used
to model open information systems as complex and dy-
namic structures of autonomous entities. One challenge
posed by the design of this kind of systems concerns the
choice of suitable methods to harness their complexity and
to guarantee the correctness of their behaviour. At the level
of modelling and specification, complex solutions required
to tackle complex application domains will benefit from a
declarative approach, especially in terms of knowledge rep-
resentation and software management. On the other hand,
if we think for instance of dependable infrastructures, net-
worked enterprises, and electronic health care as possible
application domains, the correctness of models and imple-
mented systems is a requirement that must be met by a de-
sign methodology encompassing theoretical and practical
aspects.

In recent times, logic programming has been proposed
as a powerful technology, formal and declarative, for the

specification and verification of agent based and open sys-
tems. Most interestingly, logic programming provides a di-
rect link between specification and implementation, which
opens the possibility to easily derive an implementation
from a synthetic and readable system specification, and to
formally prove properties about the behaviour of the im-
plemented system. Recent advances in logic programming
frameworks, such as those based on constraint satisfaction
technology, improved the efficiency of tools that are now
used in many commercial applications such as those involv-
ing planning and scheduling.

In this work, we focus on the interaction design in open
multi-agent systems. As discussed by Omicini and Os-
sowski in [15], following Gelernter and Carrero [11], the
agent interaction space could be designed using a subjec-
tive perspective, derived from the agent specifications, oran
objective coordination model, independently of the agents
which will populate the system. In this work, unlike other
agent oriented software methodologies [21, 14, 7], we take
an objective approach to the interaction space design. The
main purpose of our approach is in fact to give the abstrac-
tions required to be able to prove global properties of a sys-
tem of interacting agents, and to give the formal machinery
needed to perform a verification on their externally observ-
able behaviour.

Agent Communication Languages (ACLs) semantics
and Interaction Protocols (IPs) definition, intended to be
part of the interaction design, are well known for being
a well suited domain for formal approaches. We ground
our approach on a logic-based formalism, called Social In-
tegrity Constraints (ICS), introduced in [4], for the speci-
fication and verification of agent interaction. In particular,
ICS can be used to define the semantics of ACLs and IPs,
and a proof-procedure based on Abductive Logic Program-
ming (calledSC-IFF) can be used to verify the compliance
of agent interaction to such semantics and protocols. We
then advocate the use ofICS within a more general frame-
work in the overall design of the interaction space in an open



multi-agent system. We draw a design methodology com-
posed of a number of steps, including the specification of
interaction and of desired properties, and their verification.
The advantage of such an approach is given by the uniform
formalism used to specify ACLs, IPs, and properties, and
by the existence of a proof-procedure, proven correct with
respect to the declarative semantics of theICS framework,
and for which an implementation is available, based on con-
straint technology.

This paper is structured as follows. In Section 2 we in-
troduce an example that we use throughout the paper. Sec-
tion 3 briefly explains theICS framework. In Section 4 we
describe our proposed methodology. Section 5 concludes
the paper.

2. An auction example

In this Section, we introduce a running example which
we will refer to throughout the paper. The example is a first
price sealed bid auction, where agents bid to buy goods.
Highest bid wins. The actions involved in the auctioning
are both communicative (auction announcement, bid, no-
tification) and physical (delivery, payment). For the sake
of simplicity, we model all of them as communicative ac-
tions, and we assume for example that a message stating a
delivery can be taken as a proof of the delivery itself. In a
concrete application, this assumption will rely for instance
on a trusted third party, which we do not model here. Also,
we assume that the auction participants are known to the
bidder. This can be achieved in a concrete implementation
by a registering service such as those used in most Internet
auction sites.

The auction protocol is composed of the following steps:

1. Announcement.The auctioneer broadcasts anopauc
(open auction) message to all potential bidders. The
opaucmessage will contain information about item(s)
on sale and deadlines.

2. Bid. The interested agents make theirbid.

3. Notification. The auctioneer notifies the bidders with
win or lose.

While the protocol specifies the sequence of actions rul-
ing a certain interaction, the communicative actions define
the atomic steps involved in the interaction itself. We can
express their intuitive meaning based on a social notion of
commitment [19, 6]. The (communicative) actions involved
in the auction protocol are as follows:

• opauc, specifying items on sale and deadlines. The
meaning ofopaucis a “commitment” for the auction-
eer to answer to bidders by notifying their winning or
losing the auction, given some deadlines;

• bid, specifying the price or quote that an agent is ready
to pay for some item(s). The meaning ofbid is a “com-
mitment” for the bidder topaythe price in case he turns
out to be the winner;

• answ, used in the notification phase of the protocol (we
useansw(win) to notify a winner,answ(lose) to no-
tify a loser). The meaning if ofansw(win) is a “com-
mitment” for the auctioneer to deliver the good to the
winning agent, while theansw(lose) bears no commit-
ment;

• pay, used to notify the payment of the goods by a win-
ning agent. It bears no social commitment;

• deliver, used to notify the delivery of goods by the auc-
tioneer to the winning agents. It bears no social com-
mitment.

3. Social Integrity Constraints

Social Integrity Constraints are an abductive [13] logic-
based formalism, that can be used to specify thesocialse-
mantics of ACL/IP in a uniform way. By social we mean
that the semantics of interaction is not given in terms of
specific agent architectures (such as mental states), but in
terms of externally observable agent behaviour.

Agent interaction is represented by means ofevents(the
actualagent behaviour) andexpectations. The idea of social
expectations is related to that of commitments, with the dif-
ference that they do not necessarily represent commitments,
but more in general what is expected, given a certain history
of events and a specification of ACL semantics and IPs. Ex-
pectations represent thedesiredagent behaviour, i.e., the
possible courses of events that comply with the given IPs.
They can be positive (events that are expected to happen)
or negative (events that are expected not to happen), and it
is possible to generate sets of alternative expectations, to
model possible alternative “desired” courses of events.

In such an abductive framework,ICS specify the link
between events and expectations, modelled as abductive hy-
potheses.ICS can be seen as forward rules, stating that if
a conjunction of events has (not) happened, or is (not) ex-
pected (not to) happen, then one among several alternative
situations is (not) expected (not to) occur.

Such situations are expressed as conjunctions of ex-
pected events, possibly containing variables whose domains
can be related to each other by some constraints. CLP [12]
constraints over variables allow for a fine-grained specifi-
cation of expectations: in particular, they are often used to
express time deadlines.

Once we have a formal specification of ACL semantics
and IPs, it is possible to formally verify whether the be-
haviour of a group of agents is compliant with such a spec-

2



ification. The verification procedure is the abductive proof
procedureSC-IFF [5, 2] inspired by Fung and Kowalski’s
IFF [10], augmented with transitions for constraint propaga-
tion and reasoning about events or expectations (in particu-
lar, to check if the events fulfill or violate the expectations).
Given the specification of ACL semantics and IPs, and a
history of events as input, the proof procedure yields as out-
put a set of possible alternative sets of expectations, and an
answer offulfillment (which indicates that the interaction
protocols have been satisfied by the interacting agents) or
violation (which is caused by agents violating the IPs or be-
having in contrast with the ACL semantic specifications).

As an example of ACL semantic specification, we ex-
press the semantics ofopauc, a communicative action in-
troduced in Section 2. Events are identified by the func-
tor H, while expectations are identified by the functorE

(meaning positive expectations) orEN (meaning negative
expectation).

[ICopen]:
H(tell(A,B, opauc(Item, TEnd, TDead), AID), TO),
H(tell(B,A, bid(Item, Q), AID), TBid) : TBid < TEnd ⇒

E(tell(A,B, answ(win, Item, Q), AID), TWin) :
TWin < TDead, TEnd < TWin ∨
E(tell(A,B, answ(lose, Item, Q), AID), TLose) :
TLose < TDead, TEnd < TLose

[ICopen] formally states that, if anopaucevent is issued
by an agentA at a timeTO, announcing an auction hence-
forth identified byAID, where anItemis on sale, and where
bids are accepted until timeTEnd and notification is given
by timeTDead, then, if a recipientB makes abid by TEnd,
proposing aQuote, A is expected to notifyB by TDead

whetherB is the winner or not. ThisICS defining the pro-
duction of expectations from a set of facts defines the so-
cial semantics of the communication actionopauc. In other
words, an agentA issuing anopaucaction may modify, un-
der certain circumstances, the state of social expectations,
by introducing one among two new possible expectations:
Saying this is enough to define the semantics of the act of
A issuingopauc.

The SC-IFF operates based on a set of integrity con-
straints and on a history of events, and it generates a dis-
junctionEXP of sets of events expected (not) to happen.

Given a set ofICS and a history of events, at every step
theSC-IFF generates a proof tree in which the leaves con-
tain the state of the interaction, in terms of “history” of mes-
sages (calledHAP), and pending, fulfilled or violated ex-
pectations. It may be the case that, given a certain history
HAP, all the branches present a semantic inconsistency.
The inconsistency may stems from the semantics given to
the communicative actions or from the protocol definitions
(for instance, the same event being both expected to happen,
and expectednot to happen), or it may be due to the wrong
behaviour of an agent (for instance, an event expected not

to happen which instead happens).
The possibility to detect such situations and to distin-

guish among various cases of inconsistency, which is a fea-
ture of theSC-IFF, is our basis for the interaction design
methodology, which we will present in the next section. In
particular, inconsistent situations can suggest modifications
and refinements of the language and protocol specification,
or of the properties that we want to hold in the system.

The SC-IFF has been implemented in SICStus Prolog
[18], exploiting the Constraint Handling Rules (CHR) [9]
and CLP(FD) libraries. The proof tree is explored with a
depth-first strategy, thus enabling the implementation to ex-
ploit the Prolog stack directly. Most of the data structures
representing each node of the computation tree are imple-
mented as CHR constraints, so to exploit the CHR computa-
tional model for the implementation ofSC-IFF transitions,
which define its operational semantics [5]. TheSC-IFF is
integrated in theSOCS-SItool, described in [3]. A demo
example of interaction verification usingSOCS-SIcan be
seen from [1].

4. A methodology for designing the agent inter-
action space usingSOCS-SI

In the past, many methodologies have been proposed for
designing and engineering multi-agent systems. We have
cited the Gaia methodology [21], the KGR approach [14],
and the Agentis approach [7]. A common characteristic of
such methodologies is to be found in their spirit of helping
the construction of a full-fledged agent system. Differently
from them, in our methodology we do not aim at consider-
ing all aspects of multi-agent system design. We focus in-
stead on agent interaction. Our goal is to help the design of
ACLs, IPs, and the definition and verification of properties.
Differently from the approach followed in [21], protocols
are not given (agents could be given, instead, since our aim
is not agent design). Also, we do not directly refer to the
concept of role, although useful, but we aim at designing
the interaction space independently of the social structure.

Before we describe the methodology, let us briefly iden-
tify the components coming into play in the interaction
space design process and their relationships. The main
actors are indeed theagents. They could be either seen
as black-boxes exhibiting a behaviour to the outside, or
as transparent components of a systems, or as partially
known/observable entities. In the case of open systems, the
first approach is often the one which is adopted, whereas the
latter (grey-boxmodel in [20]) is more suitable for the de-
sign of an agent system which needs to interact with other
agent systems, as in the most general case.

Protocol and language definitionsrepresent another
component. In particular, we refer to the definition of the
syntax, semantics, and pragmatics of ACLs, and to the def-

3



inition of protocols, as it could be done, e.g., by means of
AUML protocol diagrams.

A third component is theobservable behaviourof
agents, i.e., the output of their activity. It could be for
instance the sequence of their communicative acts, or the
physical delivery of goods.

Finally, we have theproperties, which we would like to
achieve by defining the interaction space. Such properties
could be regarding the interaction itself, or its outcome, or
both. We are mostly interested in those properties which
can be formally defined, as it will soon become clear.

In the abstract framework that we propose, the design of
the interaction space can be described as an iterated process
consisting of the following phases:

1. definition/refinement of theenvironment(agents sys-
tems and interaction media): this can be done using a
functional and data-flow representation;

2. definition/refinement of theinteraction space(in par-
ticular, ACL semantics and protocol specification);

3. definition/refinement of formalproperties that we
would like the system to exhibit, and theirverification;

4. if properties are disproved, back to phase 1.

Once a model is done which satisfies the properties that
we have defined, it can be implemented into a concrete
agent system. We will not discuss in this paper the ways
to ensure that the model specification and its implementa-
tion are coherent with each other, although we stress that it
is a very important point, and we indeed believe that logic
programming can help in this. We will instead now analyze
the steps above in more detail.

4.1. Environment definition

Theenvironmentis composed by the agents themselves,
the communication media, and by the contextual entities
that are relevant to the operation of the agent system.

In the auction example, the environment will include at
least two agents having one of two possible roles (n bidders,
n ≥ 1, and one auctioneer), and a communication medium
that permits bidirectional communication between auction-
eer and each bidder.

The environment definition is part of our methodology,
but we do not propose any new formalism or tool for it: it
could well be done by following any of the aforementioned
approaches and possibly achieving a first definition of the
entities agents, and a concrete realisation of the multi-agent
system. When we proceed to the subsequent phases, we
might find out that the current definition of the environment
does not allow for modelling a system which exhibits the
properties that we are interested in. In that case, this step

should be iterated starting from different assumptions. In-
deed, in some cases part of the environment could be given
as a specification.

4.2. Interaction space definition

The interaction spaceis defined in terms of ACLs and
IPs. Although many ways are possible to give such def-
initions, since our main objective is to help the design of
agent systems which exhibit some formally defined proper-
ties, we ought to consider formal approaches. In particular,
will choose to useSocial Integrity Constraintsas a uniform
means to specify both ACL semantics and IPs.

In order to put things more concretely, let us give the
specification of the auction example. We have already de-
fined the semantics ofopaucby [ICopen]. Let us now define
the semantics ofbid andwin:

[ICbid]:
H(tell(B,A, bid(Item, Q), AID), TBid) : TBid < TEnd,

H(tell(A,B, answ(win, Item, Q), AID), TWin),
H(tell(A,B, deliver(Item), AID), TDel) ⇒

E(tell(B,A, pay(Q, Item), AID), TPay) :
TPay < TDel + TPay Deadline

[ICwin]:
H(tell(B,A, bid(Item, Q), AID), TBid) : TBid < TEnd,

H(tell(A,B, answ(win, Item, Q), AID), TWin), ⇒
E(tell(A,B, deliver(Item), AID), TDel)
TDel < TWin + TDeliver Deadline

Communicative acts, such asbid andansw(win), can be
defined in a general enough way, such that we can use the
same acts in different protocols (for instance, in other auc-
tion protocols). IPs can then be seen, in this perspective,
as additional sets of constraints, defining relations among
communicative actions, which are to be added to those al-
ready defining the ACL, and which have to be consistent
with them. The specification of the IP in our example will
be as follows:

[ICopen−if−bid]:
H(tell(B,A, bid(Item, Q), AID), TBid) ⇒

E(tell(A,B, opauc(Item, TEnd, TDead), AID), TO) :
TO < TBid, TBid ≤ TEnd

[ICauc−win−no−lose]:
H(tell(A,B, answ(win, Item, Q), AID), TWin), ⇒

EN(tell(A,B, answ(lose, Item, Q), AID), TLose) :
TLose < TWin

[ICauc−lose−no−win]:
H(tell(A,B, answ(lose, Item, Q), AID), TLose), ⇒

EN(tell(A,B, answ(win, Item, Q), AID), TWin) :
TWin < TLose

The first ICS states that in the protocol abid must be
preceded by anopauc. The second and thirdICS state
that an agent (auctioneer) may not tell bothansw(win) and
answ(lose) to the same agent, within the same auction.

4



This protocol specification is one choice among several
options. The next phases will serve to decide whether we
need to define the IP differently instead.

4.3. Properties definition and verification

An interaction space is “properly” designed if it exhibits
some formally definedproperties. For instance, in the de-
sign of an auction protocol, we would like to ensure that the
agent who utters the highest bid will be assigned the goods
at a certain price, and that it will pay for the price specified
in its bid.

Following Pitt and Guerin [16], the definition of prop-
erties, again, could follow a declarative and logic-based
methodology, and in particular it could be done by means
of integrity constraints. Let us consider the following ex-
ample, adapted from [16].

The property informally stated above can be formally
defined as follows: “For all courses of eventsHAP such
that there exists a consistent set of expectationsEXP, such
that EXP is fulfilled by HAP, [ICprop] holds”, where
[ICprop] is defined above:

[ICprop]:
H(tell(B,A, bid(Item, Q), AID), TBid),
¬H(tell(B′, A, bid(Item, Q’), AID), T ′

Bid) :
B′ 6= B,Q′ > Q ⇒

H(tell(A,B, answ(win, Item, Q), AID), TWin),
H(tell(A,B, deliver(Item), AID), TDel) :
TDel < TWin + TDeliver Deadline,

H(tell(B,A, pay(Q, Item), AID), TPay) :
TPay < TDel + TPay Deadline

Checking this property in this framework in general
means considering all possible historiesHAP complying
with the ACLs and IPs, and checking whether[ICprop] is
entailedby HAP.

Verifying this kind of entailment given a specific history
instance is not hard, since all history instances are ground
sets of facts. Therefore, this method is directly applicable
when the set of possible histories of events is countable, or
when we are interested in verifying properties only in some
particular situations, which could be given a-priori.

We are currently studying how to extend this methodol-
ogy to tackle the more general case. It could be interesting
to explore work done in model checking, to see if we can
use some existing results for this purpose.

During the verification of properties, it may turn out that
under some circumstances a property is not achieved. In
that case, this step or some previous ones should be iter-
ated, and either the interaction space definition or the target
properties refined.

Let us assume, for the sake of example, that the inter-
action space has been defined without[ICbid]. This means
that there is noICS stating that after abid and a notification

of kind answ(win) the winning bidder will pay the price of
the item(s) on sale. Therefore, it is possible to find a history
of events which is compliant to the specification, but which
does not entail[ICprop]. Once this turns out, options could
be: to modify[ICprop], if we realise that it is not what we
want to achieve by the auction protocol, or to modify the
semantics of the ACL, by introducing[ICbid].

Another situation that may occur is that some history in-
stance produces only inconsistent sets of expectations, but
no violation. This is normally a sign that the interaction
space has been ill-defined. Conversely, we also aim to avoid
having history instances which we intend to be marked as
inconsistent, but for which theSC-IFF generates a success
node. This normally means that the interaction space is
under-constrained, and again, we need to refine its speci-
fication.

5. Discussion and Related Work

The contribution of this work is two-fold. On the one
hand, we discuss about the problem of defining and rea-
soning about the agent interaction space, and propose a
methodology where the designing process consists of sev-
eral steps guided by the definition and verification of prop-
erties. On the other hand, we give a concrete instantiation
of the abstract framework, based on theSOCS-SIplatform
and using a logic-based protocol definition language.

In Section 1 we have mentioned some well known
methodologies aimed at designing agent systems. Our ap-
proach is rather focussed on the design of agent interaction
than to agent systems as a whole. There are other tools
which are more focussed on the social aspects of multi-
agent systems design. They often define structured hier-
archies, roles, and deontic concepts such as norms and obli-
gations as first class entities. Among others, we cite IS-
LANDER, [8] which can be used for the specification and
verification of complex social infrastructures, such as elec-
tronic institutions. ISLANDER allows to analyze situa-
tions, called scenes, and visualize liveness or safeness prop-
erties in some specific settings. Although we focus on so-
cial aspects, we do not aim at capturing complex institu-
tional aspects, nor at helping programming single agents,
but we rather propose a framework to reason about proper-
ties which can be formally defined and verified in the gen-
eral context of agent interaction.

The framework that we propose focusses on interactions,
but it does not ensure that the implemented system will in-
deed behave in the desired way. In particular, in the case of
proprietary systems, one should make sure that the imple-
mentation reflects the specification of the system. This is
not an easy task, and methodologies such as Gaia and for-
mal approaches such as those based on computational logic
have this as their main objective [17]. In the case of open

5



systems instead, where the only available knowledge about
the agents comes from the observation of their behaviour,
the only thing that one can do is dynamic on-the-fly verifi-
cation [16]. SOCS-SIcan be used for this purpose, as it is
described in [3].

We would like to conclude by discussing some weak
points of our methodology. Firstly, we can easily imagine
that system designers used to defining protocols based on
other “pictorial” notations, such as AUML interaction di-
agrams or Coloured Petri Nets, will not feel comfortable
with theICS formalism and its associated social semantics
based on expectations. It could help to define a mapping
betweenICS and other formalisms, but this does not seem
to be an easy task, mainly because AUML andICS differ in
spirit, and there could be several ways to translate an AUML
interaction diagram intoICS .

Secondly, theSC-IFF can be easily used to dynamically
check the compliance of agent interaction to ACL semantics
and IP definitions, based on the current history of events.
It is not straightforward instead to apply it when a specific
history instance to verify cannot be given. Other techniques,
such as those based on model checking, seem to be well
suited to dealing with this case.

In the future, we would like to investigate the possibil-
ity to map and automatically translate protocols defined by
AUML diagrams into theICS formalism, and to define a li-
brary of protocols such as those proposed by the FIPA stan-
dardization body. In this way, a designer could test the prop-
erties of combinations of off-the-shelf solutions, aimingat
producing a multi-agent system which is both compliant to
the standards and exhibiting some desired formal proper-
ties. Also, we would like to explore the issue of automatic
verification of properties, without having to enumerate all
the possible history instances.

Acknowledgements

We sincerely appreciate the helpful suggestions of the
anonymous reviewers. This work is partially funded by the
Information Society Technologies programme of the Euro-
pean Commission under the IST-2001-32530 SOCS project,
and by the MIUR COFIN 2003 projectsSviluppo e veri-
fica di sistemi multiagente basati sulla logica, andLa Ges-
tione e la negoziazione automatica dei diritti sulle opere
dell’ingegno digitali: aspetti giuridici e informatici.

References

[1] A demonstration of SOCS-SI for AAMAS’04. Demo story-
board available from the public area of the SOCS web site:
http://lia.deis.unibo.it/research/SOCS.

[2] The SCIFF abductive proof procedure.http://lia.
deis.unibo.it/research/sciff/.

[3] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,
and P. Torroni. Compliance verification of agent interaction:
a logic-based tool. InProc. 17th EMCSR, pages 570–575,
2004. Austrian Society for Cybernetic Studies.

[4] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-
roni. Modeling interactions usingSocial Integrity Con-
straints: a resource sharing case study. InDeclarative Agent
Languages and Technologies. LNAI 2990, pages 243–262.
Springer, May 2004.

[5] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-
roni. Specification and verification of interaction protocols:
a computational logic approach based on abduction. Tech.
Rep. CS-2003-03, Dip. di Ingegneria, Ferrara, Italy, 2003.

[6] M. Colombetti, N. Fornara, and M. Verdicchio. A social ap-
proach to communication in multiagent systems. InDeclar-
ative Agent Languages and Technologies, LNAI 2990, pages
193–222. Springer, May 2004.

[7] M. d’Inverno, D. Kinny, and M. Luck. Interaction protocols
in Agentis. InProc. 3rd ICMAS, pages 261–268, 1998.

[8] M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an
electronic institutions editor. InProc. AAMAS, pages 1045–
1052, 2002. ACM.

[9] T. Frühwirth. Theory and practice of constraint handling
rules.J. of Logic Programming, 37(1-3):95–138, Oct. 1998.

[10] T. H. Fung and R. A. Kowalski. The IFF proof procedure
for abductive logic programming.J. of Logic Programming,
33(2):151–165, Nov. 1997.

[11] D. Gelernter and N. Carriero. Coordination languages and
their significance.CACM, 35(2):97–107, Feb. 1992.

[12] J. Jaffar and M. Maher. Constraint logic programming: a
survey.J. of Logic Programming, 19/20:503–582, 1994.

[13] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic
Programming.J. of Logic and Computation, 2(6):719–770,
1993.

[14] D. Kinny, M. Georgeff, and A. S. Rao. A methodology and
modelling technique for systems of BDI agents. InAgents
Breaking Away, LNCS1038, pages 42–55. Springer, 1996.

[15] A. Omicini and S. Ossowski. Objective versus subjective co-
ordination in the engineering of agent systems. InIntelligent
Information Agents: An AgentLink Perspective, LNAI: State-
of-the-Art Survey2586, pages 179–202. Springer, 2003.

[16] J. Pitt and F. Guerin. Guaranteeing properties for e-
commerce systems. Tech. Rep. TRS020015, Dept. of Elec-
trical and Electronic Engineering, Imperial College London,
UK, 2002.

[17] F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation:
agent varieties and dialogue sequences. InIntelligent Agents
VIII , LNAI 2333, pages 405–421. Springer, 2002.

[18] SICStus prolog user manual, release 3.11.0, Oct. 2003.
http://www.sics.se/isl/sicstus/.

[19] M. P. Singh. A social semantics for agent communication
languages. InIssues in Agent Communication, LNCS1916,
pages 31–45. Springer, 2000.

[20] M. Viroli and A. Omicini. Specifying agent observable be-
haviour. InProc. AAMAS, pages 712–720, 2002. ACM.

[21] M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia
methodology for agent-oriented analysis and design.Au-
tonomous Agents and Multi-Agent Systems, 3(3):285–312,
Sept. 2000.

6

http://lia.deis.unibo.it/research/SOCS
http://lia.deis.unibo.it/research/sciff/
http://www.sics.se/isl/sicstus/

