
Minimally intrusive negotiating agents for resource sharing∗

Fariba Sadri Francesca Toni
Department of Computing

Imperial College
180, Queens Gate
SW7 London, UK

{fs, ft}@doc.ic.ac.uk

Paolo Torroni
DEIS

University of Bologna
V.le Risorgimento, 2
40136 Bologna, Italy

ptorroni@deis.unibo.it

Abstract
We study the problem of agents negotiating pe-
riods of time during which they can have use of
resources, thus allowing for the sharing of re-
sources. We define a multi-stage negotiation frame-
work where agents, in order to obtain resources,
step through a sequence of stages, each charac-
terised by an increased chance of a mutually agree-
able deal but at the price of disclosing more and
more information. In the sequence, the agents may
agree to move to the next stage if the previous stage
fails to produce a deal amongst them. In this pa-
per, we concentrate on two early negotiation stages,
characterised by minimal disclosure of informa-
tion. Thus, the agents negotiating at these stages
can be thought of as “minimally intrusive”.

1 Introduction
Negotiation of resources is an important research area in
multi-agent systems. In general, agents may negotiate to ob-
tain resources that they are missing but that are necessary to
carry out their plans. In this paper, we assume that negotiation
for resources takes place within the framework of [Sadri et
al., 2002], where the knowledge of the agents is represented
as a tuple < B,R, I,D,G > with B: beliefs about the world,
the self and the other agents, as well as the negotiation poli-
cies of the agent; R: initially owned resources; I: intentions,
i.e., the plans1 that the agent intends to carry out, in order to
achieve its goals, together with the resources required for that
plan; D: store of past dialogues; and G: agent goals.

We extend [Sadri et al., 2002] to negotiate not just re-
sources, but also time windows during which resources
can be used by agents, thus allowing for sharing of (non-
consumable) resources over time, The extended framework
allows solutions for a wider range of resource re-allocation
problems. In the extended framework, agent intentions are

∗This work is partially funded by the IST programme of the Eu-
ropean Commission under the IST-2001-32530 SOCS project.

1It is beyond the scope of this paper to provide a general and
exhaustive representation of the agent knowledge. Instead, we con-
centrate on those elements relevant to the resource sharing problem.
In particular, for simplicity, we identify here intentions with plans.

sets of activities. Drawing inspiration from [El Sakkout and
Wallace, 2000], we model an activity a (a is a unique identi-
fier) as a tuple < a,Ra, Da, T sa, T ea > denoting that a re-
quires resource Ra, has duration Da, earliest start time Tsa,
latest end time Tea. Note that, without loss of generality,
we assume that each activity requires only one resource 2. In
the extended framework, the knowledge of agents includes a
(possibly empty) concrete schedule Î for activities, where if
< a, ts, te >∈ Î then < a,R,D, Tsa, T ea >∈ I, such that
te − ts = D, ts ≥ Tsa, and te ≤ Tea.

We develop negotiation protocols and policies that allow
agents to exchange resources and strike deals for agreed time
windows. We introduce a multi-stage process of negotiation,
each characterised by a protocol and a policy. A higher stage
involves more information passing between agents and more
sophisticated negotiation, possibly including re-planning by
the agents aimed at trying to help satisfy each other’s con-
straints and requirements. The following example illustrates
the sort of problems and solutions we propose in this paper.
Example 1 Let x and y be two agents. x’s intentions contain
an activity a requiring a resource r, < a, r, 3, 1, 5 >∈ Ix.
y’s intentions contain an activity b also requiring r. x owns
r from time 1 to 3 and from time 5 onwards, and y owns r
from time 3 to 5. x needs r for three consecutive time slots
between 1 and 5, but it currently owns r for only two time
slots. Let us consider the three scenarios below.

1. < b, r, 1, 4, 10 >∈ Iy . The problem is solved by y
agreeing to give r to x for [3, 4].

2. < b, r, 1, 3, 10 >∈ Iy and y has a concrete schedule
Îy =< b, 3, 4 > for b to be carried out between 3 and
4. The problem is solved by y agreeing to postpone its
schedule by 1 time slot and giving r to x for [3, 4].

3. < b, r, 2, 3, 10 >∈ Iy . y cannot give r away, because
otherwise b becomes unfeasible. The problem can be
solved by an exchange: y agrees to give r away to x for
[3, 4], in return for x giving r to y for [5, 6]. �

2 Background and Preliminaries
In this section we review and adapt some concepts from back-
ground papers, needed in the rest of the paper.

2Indeed, it is possible to model any activity requiring multiple
resources by a number of activities, one for each resource, with the
same duration and times.

Definition 1 An agent system is a finite set S, with at least
two elements, where each x ∈ S is a ground term, represent-
ing the name of an agent. All elements of S are distinct (agent
names must be uniquely identifiable). Each agent x ∈ S is
equipped at each time τ ∈ N with a knowledge base Kx,τ ,
namely a tuple < Bx,Rx, Ix,Dx,τ ,Gx, Îx,τ >, as explained
in the introduction.

Note that, in this paper, we assume that the only parts of
the knowledge base of an agent that change over time are the
dialogue store, which grows in time, and the concrete sched-
ule. We will also assume that, in Ix, all activities that require
the same resource have disjoint time windows. In the sequel,
when clear from the context, we will sometimes refer to the
knowledge base of an agent x simply as Kx or K.
Definition 2 Let S be an agent system. Let Res be a set
of resources.3 Let Res × N × N −→ S be the resource
allocation in the system at time τ (this can be determined,
for example, from R and D of all agents at time τ). The
allocation of resources is defined for time periods [Ts, Te],
Ts ≥ 0, Te ≤ Tmax, where Tmax is the maximum schedul-
ing time, defined as follows:

Tmax
def
= max

x∈S
{TE | < , , , , TE >∈ Ix}.

The negotiation process we will define modifies the re-
source distribution in the agent system through time. The
Temporal Resource Reallocation Problem (T-RRP) is the
problem of answering to the following question: Does there
exist a time τ during the negotiation process when the re-
source distribution is such that each agent has the resources it
requires for time periods that would allow it to perform the ac-
tivities in its intention, within their specified time windows?

The purpose of this work is to show how it is possible to
find a solution to the T-RRP (when one exists) by using agents
that negotiate by means of dialogues. We will assume that all
agents in a system share the same communication language,
in terms of syntax, semantics, ontology, and pragmatics. We
refer to [Sadri et al., 2002] for a formal definition of a lan-
guage for negotiation. In brief, a language defines the set of
allowed dialogue moves. Each dialogue move is coded into a
tell predicate, which has 5 arguments: sender, receiver, con-
tent, dialogue identifier, and time of the move. We will use
the communication language L1−TW , defined below:
Definition 3 L1−TW = {

tell(X,Y,Content,D, T) | Content ∈
{ (1) request(give(R, (Ts, Te)))

(2) accept(request(give(R, (Ts, Te))))
(3) refuse(request(give(R, (Ts, Te))))
(4) promise(R, (Ts, Te), (Ts′, T e′))
(5) change(promise(R, (Ts, Te), (Ts′, T e′)))
(6) accept(promise(R, (Ts, Te), (Ts′, T e′))) }}

where Ts, Te are positive integers between 0 and Tmax, for
all dialogue moves, Ts < Te, and for (4)–(6), Ts′ < Te′.

The first three moves are of intuitive meaning. (4) is used
by X to propose a deal (promise): X will give R to Y for

3Without loss of generality, we assume that all resources in the
system are non-consumable (for resource reallocation, consumable
resources differ from non-consumable ones in that the former can
be allocated only for maximal intervals [0, Tmax], and not for any
sub-intervals, where Tmax is given below in the definition).

S
F-s

S
1

S
F-u

S
0

y:request

x:accept_req

x:refuse_req

S
F-s

S
1

S
F-u

S
0

y:request

x:accept_req

x:refuse_req

Figure 1: Protocol for Stage 1
the interval [Ts′, T e′] if Y will give R to X for the interval
[Ts, Te]. (5) is used to refuse a proposed deal and ask for a
new one (there is no refuse promise move which only termi-
nates a protocol), (6) is used to accept a deal.

Given a language for negotiation L, we define the set of
final moves F(L). In particular, F(L1−TW) is the subset of
L1−TW that contains all the moves whose content is (2), (3)
or (6).

Dialogues can be generated by means of policies, held by
the knowledge base of the agents.
Definition 4 Policies are expressed as dialogue constraints of
the form pi ∧C ⇒ pi+1, where pi and pi+1 are moves. The
conditions C are to be evaluated in the knowledge base of the
agent or in extensions to it. The intended use of these policies
is that if the agent receives a move pi, and the conditions C
are satisfied in its knowledge base, the agent generates pi+1.
An operational model for policies is defined in [Sadri et al.,
2002].
Definition 5 Given an agent system S equipped with a lan-
guage for negotiation L and two agents X and Y in S
equipped with policy Pol, a dialogue induced by Pol be-
tween X and Y is a set of ground dialogue moves in L,
{p0, p1, p2, . . .}, such that, for a given set of time lapses
0 ≤ τ0 < τ1 < τ2 < . . .:

1. ∀ i ≥ 0, pi is uttered at time τi;
2. ∀ i ≥ 0, if pi is uttered by agent X (viz. Y), then pi+1

(if any) is uttered by agent Y (viz. X);
3. ∀ i > 0, pi can be uttered by agent U ∈ {X,Y } only

if there exists a (grounded) dialogue constraint in Pol,
pi−1 ∧ C ⇒ pi s.t. KU,τi−1

∧ pi−1 ` C;
4. there is an identifier D such that, ∀ i ≥ 0, the dialogue

identifier of pi is D;
5. ∀τ , τi−1 < τ < τi, ∀i > 0 s.t. pi and pi−1 belong to the

dialogue, there exist no moves at τ with either X or Y
being either the receiver or the utterer.

A dialogue {p0, p1, . . . pm}, m ≥ 0, is terminated if pm is a
ground final move, namely pm is a ground instance of a move
in F(L). We say that such a terminated dialogue starts at
time τ0 and ends at time τm.

Note that this definition prevents agents from being in-
volved in more than one dialogue at a time (e.g., dialogues
cannot be nested).

An important property of policies used to induce dialogues
as in Definition 5 is conformance to protocols, known to all
agents involved in the dialogue. A dialogue protocol can be
defined as a set of states, representing the current state of dia-
logue, a set of allowed dialogue moves, and a set of transition
rules that, given a state and a move, produce a state. A pro-
tocol is therefore defined as a finite state machine, consisting
of states and arcs, which has among its states an initial state

S0, two final states, SF−s (successful termination) and SF−u

(unsuccessful termination), and possibly a number of inter-
mediate states Si. The arcs can be viewed as allowed transi-
tions mapping one state to another given a label. These labels
correspond to the content of moves. An example of protocol
is in Fig. 1. When we show the protocols, we use some ab-
breviations, such as for instance:

request for request(give(R, (Ts, Te))),
refuse req for refuse(request(give(R, (Ts, Te)))).

In order to define the concept of conformance, we define
dialogues in relation with protocols.
Definition 6 Given an agent system S equipped with a lan-
guage for negotiation L, and a protocol P , a dialogue con-
forming to P , between two agents X and Y in S, is a set of
ground dialogue moves in L, {p0, p1, p2, . . .}, such that, for
a given set of time lapses 0 ≤ τ0 < τ1 < τ2 < . . .:

1. 2. 4. 5. as for Definition 5;
3. the content of p0 must label an arc from S0. ∀i, if the

content of pi is the label of an arc into a final state, then
there is no pi+1 in the dialogue. ∀ i, the contents of pi

and pi+1, if they both exist, must be labels, respectively,
of an arc going into a state, and an arc coming out of the
same state.

A dialogue {p0, p1, . . . pm}, m ≥ 0, is terminated if pm is
the label of an arc into a final state.

We are now ready to define the concept of conformance of
policies to protocols.
Definition 7 Given a policy Pol and a protocol P , Pol con-
forms to P if every dialogue induced by Pol is a dialogue
conforming to P .

We define sequences of dialogues for a resource R and an
activity A, between two agents X and Y .
Definition 8 Given an agent system S, a sequence of dia-
logues σ between two agents X and Y in S for a resource R
and an activity A is a set of terminated dialogues between X
and Y , σ = {d0, d1, d2, . . .}, where dj = {pj0, pj1, . . . , pjn}
for all j, such that, for a given set of time lapses 0 ≤ τ0 <
τ1 < τ2 < . . .:

1. ∀ i ≥ 0, di is initiated by X at time τi, and it is termi-
nated at a time τ ′

i < τi+1;
2. @i, j, i 6= j such that pi0 = pj0;
3. ∀i, if di and di+1 are in σ, then di = {pi0, . . . , pin}

and pin = tell(Y,X, refuse(request(give(R, (Ts, Te)
))), di, τ) for some Ts, Te, τ ;

4. ∃ < A,R,D, TS, TE >∈ IX such that ∀i pi0 =
tell(X,Y, request(give(R, (Ts, Te))), di, τi)) for some
Ts, Te such that Ts ≥ TS and Te ≤ TE;

5. If σ is finite, i.e. σ = d0, . . . , df for some f ≥ 0,
then df = {pf0, . . . , pfn}, the last dialogue in the se-
quence, is such that for some τ, Ts, Te, T

′
s, T

′
e, pfn =

tell(Y,X, accept(request(give(R, (Ts, Te)))), df ,
τ) or pfn = tell(Y,X, accept(promise(R, (Ts, Te),
(Ts′, T e′))), df , τ).

We assume the atomicity of sequences of dialogues: agents
will not react to any incoming request about a resource r if
they are participating in an ongoing sequence of dialogues
regarding r, and moreover they themselves will not make a
request for r with respect to another activity while they are
participating in an ongoing sequence of dialogues which they

initiated (an agent cycle very similar to the one in [Sadri et
al., 2002] will achieve this atomicity).

3 Negotiation Stages
We define two different stages of negotiation, each character-
ized by the degree of flexibility of the agents and the amount
of information disclosed and used by them:

Stage 1: Request/flexible schedule
Stage 2: Blind deal

In this section, for each stage we define the protocol, the
policies adopted by the agents, and the properties of the stage.
The properties that we study are (i) conformance of the policy
to the protocol, (ii) properties of single dialogues (termina-
tion and characterization of the class of problems that can be
solved), (iii) properties of sequences of dialogues happening
at that stage, and (iv) subsumption of earlier stages (in terms
of solvable problems). In particular, for each stage we give
an example of a problem that can be solved within it, and an
example of a problem that cannot.

In defining the policies and in stating the results, we rely
upon some predicates, whose formal definition is given in ap-
pendix. We use the notation KX,τ ` p to indicate that at
time τ the knowledge of X entails a certain predicate p. The
proofs of the results are omitted for lack of space.

3.1 Stage 1 - request/flexible schedule
Protocol. The protocol is given in Figure 1.
Policy. The policy is shown in Figure 2: an agent will accept
a request for R if it can find a concrete schedule of its own
activities that does not make use of R during the requested
interval. It will refuse it otherwise, leading to an unsuccessful
final state. Note that it is up to the requesting agent to find
good heuristics to formulate a request or a series of requests
which can be accepted.
Example 2 Let us consider the following example:
Iy = {< a, r, 5, 10, 20 >} Ix = {< b, r, 5, 10, 20 >}
Îy = {< a, 11, 16 >} Îx = ∅
Ry = {have(r, (10, 20))} Rx = ∅

There is no solution if y sticks to Îy: but if y was happy with
a different schedule, e.g. Î ′

y = {< a, 15, 20 >}, then x and
y could both do their activities by sharing resource r. Thus,
this example can be solved by the following negotiation
dialogue d(1) occurring at Stage 1 (i.e., induced by the policy
of Fig. 2):

tell(x, y, request(give(r, (10, 15))), d(1), 1)
tell(y, x, accept(request(give(r, (10, 15)))), d(1), 2) �

Properties. Stage 1 is computationally demanding for the
agent who is replying to a request. The problems that can be
solved at this stage are all those that can be solved by means
of a (possibly empty) modification in the agents’ current
concrete schedule.
(i): protocol conformance. It is possible to prove that the
policy of Stage 1 is conforming to the protocol in Fig. 1.
(ii): properties of single dialogues. A request/flexible sched-
ule interaction enjoys the property of termination. In fact, di-
alogues following this protocol have a fixed number of steps.
Theorem 1 Let us consider a system composed of two
agents, x and y. Then, for all system resources r, all activities

(IC.1) tell(X, y, request(give(R, (Ts, Te))), D, T) ∧ have(R, (Ts, Te), T) ∧ ¬ need(R, (Ts, Te), T)
⇒ ∃ T ′ | tell(y,X,accept(request(give(R, (Ts, Te)))), D, T ′) ∧ T < T ′

(IC.2) tell(X, y, request(give(R, (Ts, Te))), D, T) ∧ have(R, (Ts, Te), T) ∧ need(R, (Ts, Te), T)
⇒ ∃ T ′ | tell(y,X, refuse(request(give(R, (Ts, Te)))), D, T ′) ∧ T < T ′

(IC.3) tell(X, y, request(give(R, (Ts, Te))), D, T) ∧ ¬ have(R, (Ts, Te), T)
⇒ ∃ T ′ | tell(y,X, refuse(request(give(R, (Ts, Te)))), D, T ′) ∧ T < T ′

Figure 2: Stage 1 policy for an agent y

a assigned to x, all times τ , and all intervals [Ts, Te] s.t.
Kx,τ ` miss(r, (Ts, Te), a) ∧
Ky,τ ` avail(r, (Ts, Te)),

there exists a dialogue d induced by the policy of Stage 1,
starting at time τ , and ending at time τ ′, such that

Kx,τ ′ ` need(r, (Ts, Te), a, τ ′) ∧
Ky,τ ′ ` indiff(r, (Ts, Te)). Intuitively this theorem

states that if there exists a time window tw such that an agent
x needs r in it and another agent has r available in tw, then
there also exists a dialogue induced by the policy of Stage
1 which solves x’s reallocation problem about r. This intu-
itive understanding of the theorem is the result of the formal
predicate definitions given in appendix.
(iii): properties of sequences. It is up to the agent who is
missing a resource to find good heuristics to formulate the
requests, which can lead to a successful dialogue sequence
(provided it is possible to find a solution at this stage). Given
an agent x, a resource r, and an activity a, one possibility
could be a cycle starting at a time τ where x successively asks
for intervals [Ts, Te] such that Kx,τ ` miss(r, (Ts, Te), a),
until all such intervals are exhausted, or the request for one of
the intervals is accepted. We call this Strategy1.
Theorem 2 Let us consider a system composed of two
agents, x and y, negotiating at Stage 1. Then, for all resources
r in the system, and all activities a assigned to x that require
r, if x follows Strategy1 in its attempt to acquire r from y,
starting at τ with a request for r for an interval [Ts, Te] such
that Kx,τ ` miss(r, (Ts, Te), a), then either the resulting se-
quence of dialogues will be finite and will terminate at a time
τ ′, and Kx,τ ′ ` feas(a, (Ts?, T e?)), for some Ts?, T e?, or
@ Ts′, T e′ such that

Kx,τ ` miss(r, (Ts′, T e′), a) ∧
Ky,τ ` avail(r, (Ts′, T e′)).

(iv): subsumption of earlier stages. Stage 1 subsumes our
previous work done in [Sadri et al., 2002], in the sense that
the resource reallocation problems it solves include those
solved by [Sadri et al., 2002].

We now give a counterexample for Stage 1.
Example 3 Let us consider the following modification of
Example 2, where there is a different initial resource assign-
ment, and different time windows for the activity b (b must be
completed by 15):

Iy = {< a, r, 5, 10, 20 >} Ix = {< b, r, 5, 10, 15 >}
Ry = {have(r, (10, 15))} Rx = {have(r, (15, 20))}

We do not give any concrete schedules for the agents’ activi-
ties since they play no role here. There is no solution to this
problem that can be found at Stage 1. In fact, if y gives away
r, it will not be possible for it to carry out a any more. �

S
F-s

S
2

x:promise

y:change_prom
y:accept_prom

S
F-s

S
1

S
F-u

S
0

y:request

x:accept_req

x:refuse_req

S
F-s

S
2

x:promise

y:change_prom
y:accept_prom

S
F-s

S
1

S
F-u

S
0

y:request

x:accept_req

x:refuse_req

Figure 3: Protocol for Stage 2
3.2 Stage 2 - blind deal
Protocol. The protocol is shown in Fig. 3. After the initial
move by y, request(give(R, (Ts, Te))), which makes the di-
alogue reach state S1, the other agent x can either accept or
refuse, as in Stage 1, or can propose a deal (promise). Af-
ter a promise, the agent y who made the request can either
accept the deal, causing a successful termination, or refuse it
(change prom), which brings back to S1.
Policy. The policy is shown in Fig. 4.4 An agent will accept a
request about a resource R for the period [Ts, Te] if it would
do it at Stage 1, but it will refuse it only if it does not have any
deal to propose (promise). In particular, an agent x will pro-
pose a deal, in reply to a request made by an agent y, if there
exists an interval [Ts′, T e′], disjoint from [Ts, Te], which has
the following property: Once y obtains R for [Ts′, T e′], it
will not need it anymore for [Ts, Te]. In that case, if y ac-
cepts to give R away for the interval [Ts′, T e′], the negotia-
tion process reaches a successful final state, otherwise x may
continue proposing different deals (if they exist), until y ac-
cepts one (successful termination), or there exist no new ones
to propose, in which case x will refuse the initial request, thus
leading to an unsuccessful final state.

Since there might be several alternative proposals for a deal
at a given time, but we want the agent’s policies to be deter-
ministic, we use in the definition of the policies of an agent
x at Stage 2 a predicate pick((Ts, Te), T), that at any given
time T uniquely determines a time period, having made ref-
erence possibly to Dx,T and Rx.

Example 3 can be solved by the following negotiation dia-
logue d(2) occurring at Stage 2:

tell(x, y, request(give(r, (10, 15))), d(2), 1)
tell(y, x, promise(r, (15, 20), (10, 15)), d(2), 2)
tell(x, y, accept(promise(r, (15, 20), (10, 15))), d(2), 3)

Properties. At Stage 2 agents are more cooperative than at
Stage 1. This is achieved by both agents – and in particu-

4We use the notation KX,τ ∪ ∆ ` p, where ∆ is a set of atoms,
to mean that KX,τ , enlarged with ∆, entails p.

(IC.1) & (IC.3) from Stage 1
(IC.4) tell(X, y, request(give(R, Ts, Te)), D, T) ∧ have(R, (Ts, Te), T) ∧ need(R, (Ts, Te), A, T)

∧ @ Ts′, T e′ | ¬ have(R, (Ts′, T e′)) ∧ tell(y,X, promise(R, (Ts′, T e′), (Ts, Te)), D,) /∈ Dy,T

∧ Ky,T ∪ {obtain(R, (Ts′, T e′)), give away(R, (Ts, Te))} ` feas(A, (Ts′, T e′))
⇒ ∃ T ′ | tell(y,X, refuse(request(give(R, Ts, Te))), D, T ′) ∧ T < T ′

(IC.5) tell(X, y, request(give(R, Ts, Te)), D, T) ∧ have(R, (Ts, Te), T) ∧ need(R, (Ts, Te), A, T)
∧ pick((Ts′, T e′), T)∧¬ have(R, (Ts′, T e′), T)∧ tell(y,X, promise(R, (Ts′, T e′), (Ts, Te)), D,) /∈ Dy,T

∧ Ky,T ∪ {obtain(R, (Ts′, T e′)), give away(R, (Ts, Te))} ` feas(A, (Ts′, T e′))
⇒ ∃ T ′ | tell(y,X,promise(R, (Ts′, T e′), (Ts, Te)), D, T ′) ∧ T < T ′

(IC.6) tell(X, y, change(promise((,), (Ts, Te))), D, T) ∧ have(R, (Ts, Te), T) ∧ need(R, (Ts, Te), A, T)
∧ pick((Ts′, T e′), T)∧¬ have(R, (Ts′, T e′), T)∧ tell(y,X, promise(R, (Ts′, T e′), (Ts, Te)), D,) /∈ Dy,T

∧ Ky,T ∪ {obtain(R, (Ts′, T e′)), give away(R, (Ts, Te))} ` feas(A, (Ts′, T e′))
⇒ ∃ T ′ | tell(y,X,promise(R, (Ts′, T e′), (Ts, Te)), D, T ′) ∧ T < T ′

(IC.7) tell(X, y, change(promise(R, (Ts′, T e′), (Ts, Te))), D, T)∧ have(R, (Ts, Te), T)∧ need(R, (Ts, Te), A, T)
∧ @ Ts′, T e′ | ¬ have(R, (Ts′, T e′), T) ∧ tell(y,X, promise(R, (Ts′, T e′), (Ts, Te)), D,) /∈ Dy,T

∧ Ky,T ∪ {obtain(R, (Ts′, T e′)), give away(R, (Ts, Te))} ` feas(A, (Ts′, T e′))
⇒ ∃ T ′ | tell(y,X, refuse(request(give(R, (Ts, Te)))), D, T ′) ∧ T < T ′

(IC.8) tell(X, y,promise(R, (Ts′, T e′), (Ts, Te)), D, T) ∧ miss(R, (Ts, Te), A)
∧ Ky,T ∪ {obtain(R, (Ts, Te)), give away(R, (Ts′, T e′))} ` feas(A, (,))

⇒ ∃ T ′ | tell(y,X,accept(promise(R, (Ts′, T e′), (Ts, Te)), D, T ′)) ∧ T < T ′

(IC.9) tell(X, y,promise(R, (Ts′, T e′), (Ts, Te)), D, T) ∧ miss(R, (Ts, Te), A)
∧ Ky,T ∪ {obtain(R, (Ts, Te)), give away(R, (Ts′, T e′))} 0 feas(A, (,))

⇒ ∃ T ′ | tell(y,X, change(promise(R, (Ts′, T e′), (Ts, Te)), D, T ′)) ∧ T < T ′

Figure 4: Stage 2 policy for an agent y

lar the agent to whom the request is addressed – to do more
reasoning in order to be helpful in response to requests.
(i): protocol conformance. It is possible to prove that the
policy of Stage 2 is conforming to the protocol in Fig. 3.
(ii): properties of single dialogues. Stage 2 does not enjoy
the fixed dialogue length property of Stage 1, but it termi-
nates if we have a finite scheduling horizon Tmax and we do
not allow the same move twice at different times, in the same
dialogue (which is a reasonable requirement). Stage 2 is com-
putationally more demanding than Stage 1 for both agents.
Theorem 3 Let us consider a system composed of two
agents, x and y, each having an initial resource assignment.
Then, for all resources r in the system, all activities a and b,
all times τ and all intervals [Ts, Te], such that

Kx,τ ` miss(r, (Ts, Te), a) ∧
Ky,τ ` need(r, (Ts, Te), b) ∧
∃[Ts′, T e′] such that Ky,τ ∪ {give away(r, (Ts, Te)),

obtain(r, (Ts′, T e′))} ` feas(b, (Ts′′, T e′′))
for some [Ts′′, T e′′], there exists a dialogue d induced by the
policy of Stage 2, starting at time τ , and ending at a time τ ′,
such that

Kx,τ ′ ` need(r, (Ts, Te), a) ∧
Ky,τ ′ ` indiff(r, (Ts, Te)).

(iii): properties of sequences.
Theorem 4 Let us consider a system composed of two
agents, x and y, negotiating at Stage 2. Then, for all re-
sources r in the system, and all activities a assigned to x
which require r, if starting at time τ x follows Strategy1
to request r from y, either the sequence of dialogues will
terminate at τ ′ after a finite number of dialogues, and

Kx,τ ′ ` feas(a, (Ts?, T e?)) for some Ts?, T e?, or
@ Ts, Te, Ts′, T e′ such that

Kx,τ ` miss(r, (Ts, Te), a) ∧
Ky,τ ∪ {give away(r, (Ts, Te)),

obtain(r, (Ts′, T e′))} ` indiff(r, (Ts, Te)).
(iv): subsumption of earlier stages. More problems can be
solved by Stage 2 than by Stage 1, namely:
Theorem 5 Let us consider a system composed of two
agents, x and y. For all resources r in the system, all ac-
tivities a assigned to x, all times τ and intervals [Ts, Te] s.t.

Kx,τ ` miss(r, (Ts, Te), a) ∧
Ky,τ ` avail(r, (Ts, Te)),

there exists a dialogue d induced by the policy of Stage 2,
starting at time τ , and ending at time τ ′, such that

Kx,τ ′ ` need(r, (Ts, Te), a) ∧
Ky,τ ′ ` indiff(r, (Ts, Te))

Although this enlarges the set of problems that can be
solved, it does not solve, for instance, the problems where
more than one exchange is needed. We now give the follow-
ing counterexample for Stage 2.
Example 4 Let us consider the following modification of
Example 2, where there is a different resource and activity
assignment:
Iy = {< a, r, 2, 10, 55 >, Ix = {< b, r, 5, 10, 20 >}

< c, r, 2, 15, 20 >, } Rx = {have(r, (10, 13)),
Ry = {have(r, (13, 17))} have(r, (17, 20))}

There is no solution to this problem that can be found at Stage
2. In fact, the (minimal) requests that x will make to obtain
r for 5 consecutive time periods are: [13, 15] and [15, 17]. y
may reply to the first one with a deal to obtain r for [10, 12]

or for [11, 13], neither of which makes x’s activity b feasible.
The same will happen for the second request, which results
in an unsuccessful sequence of negotiation dialogues for a
problem that has a solution. �

4 Discussion
This work benefits from a logic-based high level approach
that facilitates specification and proof of formal properties
and which has an operational model, that forms a bridge be-
tween the system description and implementation. This fea-
ture is difficult to find in most related work: as the negotiation
process becomes more elaborated, it gets harder to find and
prove formal properties as those identified here. In the follow-
ing, we briefly survey similar approaches to agent negotiation
or proposed solutions to the same problem.

Our modelling of constraints draws inspiration from work
on constraint satisfaction for a monolithic system [El Sakkout
and Wallace, 2000]. But our work differs from it both in
context and approach. Our aim is to provide protocols and
policies for a multi-stage process of negotiation in a collab-
orative multi-agent context, whereas their aim is the solution
of T-RRP problems viewed as constraint satisfaction prob-
lems, while minimising changes to concrete schedules. [Har-
rison, 2000] extends such work to multi-agent systems, but
the focus there is again that of minimising changes to exist-
ing schedules, and not on negotiation.

[Conry et al., 1992] proposes an approach to negotiation
based on multiple stages, focusing on coordination degrees.
Progressive stages require that agents solve problems in a
more coordinated way. In the first stage, the agents try to
solve problems independently of other agents’ constraints,
while in the last one it is possible, e.g., to discover that the
overall problem is over-constrained and thus a certain goal is
unfeasible.

There are many issues regarding negotiation that our pa-
per does not address. For example, we do not deal with the
efficiency and timeliness of negotiation. These issues are ad-
dressed in [Kraus et al., 1995] using utility functions.

We are currently working on extending our negotiation
process to a number of further stages, whereby the agents dis-
close to each other more information about their constraints
in order to be able to propose more informed deals for ex-
changes of resources. We would like to stress that we ap-
proach a resource sharing problem from a multi-agent per-
spective: Existing scheduling techniques are likely to outper-
form compared to the negotiation processes outlined in this
work, but they do not generally allow for agent autonomy. In
the final stage of such an approach, where all the constraints
are known, the problem becomes one of distributed constraint
satisfaction. [Yokoo and Hirayama, 2000] reviews a number
of algorithms for such an application.

References
[Conry et al., 1992] S.E. Conry, K. Kuwabara, V.R. Lesser, and

R.A. Meyer. Multistage negotiation in distributed constraint sat-
isfaction. IEEE TSMC, 21(6), 1992.

[El Sakkout and Wallace, 2000] H.H. El Sakkout and M.G. Wal-
lace. Probe backtrack search for minimal perturbation in dynamic
scheduling. Constraints, 5(4), 2000.

[Harrison, 2000] C.A. Harrison. Distributed Optimisation in a Bro-
kered Architecture. PhD diss., IC-PARC, Imperial College Lon-
don, 2000.

[Kraus et al., 1995] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multi-
agent negotiation under time constraints. AIJ, 75(2), 1995.

[Sadri et al., 2002] F. Sadri, F. Toni, and P. Torroni. An abductive
logic programming architecture for negotiating agents. In Proc.
JELIA, LNCS 2424. Springer Verlag, 2002.

[Yokoo and Hirayama, 2000] M. Yokoo and K. Hirayama. Algo-
rithms for distributed constraint satisfaction: A review. AAMASJ,
3(2), 2000.

Appendix A
KX,τ ` have(R, (Ts,Te), τ) ↔

(Te is Ts + 1 ∧ KX,τ ` have(R, Ts)) ∨
(Tn is Ts + 1 ∧ Tn < Te ∧KX,τ ` have(R, (Tn, Te), τ) ∧

KX,τ ` have(R, Ts))
KX,τ ` have(R,T) ↔

(KX,τ ` have initially(R, T) ∧
@ τ ′ ≤ τ | KX,τ ′ ` give away(R, (Tagiv, T bgiv))) ∧
Tagiv ≤ T ∧ Tbgiv > T) ∨

(∃ τ ′ ≤ τ | KX,τ ′ ` obtain(R, (Taobt, T bobt))) ∧
Taobt ≤ T ∧ Tbobt > T ∧ @ τ ′′ ≤ τ |
KX,τ ′′ ` give away(R, (Tagiv, T bgiv))) ∧
Tagiv ≤ T ∧ Tbgiv > T ∧ τ ′ ≤ τ ′′)

KX,τ ` have initially(R,T) ↔
∃ Ts, Te | have(R, (Ts, Te)) ∈ RX ∧ Ts ≤ T ∧ Te > T

KX,τ ` give away(R, (Tagiv, T bgiv))) ↔
∃ tell(X, , Subject, , τ) ∈ DX,τ |
Subject ∈ {accept(request(give(R, (Taobt, T bobt)))),
accept(promise(R, (Taobt, T bobt), (,)))} ∨
∃ tell(, X, Subject, , τ) ∈ DX,τ |
Subject ∈ {accept(promise(R, (,), (Taobt, T bobt)))}

KX,τ ` obtain(R, (Taobt, T bobt))) ↔
∃ tell(, X, Subject, , τ) ∈ DX,τ |
Subject ∈ {accept(request(give(R, (Taobt, T bobt)))),
accept(promise(R, (Taobt, T bobt), (,)))} ∨
∃ tell(X, , Subject, , τ) ∈ DX,τ |
Subject ∈ {accept(promise(R, (,), (Taobt, T bobt)))}

KX,τ ` feas(A, (Ts, Te)) ↔
∃ < A, R, D, Ts′, T e′ >∈ IX | Ts′ ≤ Ts ∧ Te′ ≥ Te ∧

Te − Ts = D ∧ KX,τ ` have(R, (Ts, Te), τ)
KX,τ ` need(R, (Ts, Te), τ) ↔
∃ < A, R, , , >∈ IX | KX,τ ` need(R, (Ts, Te), A)

KX,τ ` need(R, (Ts, Te), A) ↔
KX,τ ` have(R, (Ts, Te), τ) ∧
∃ < A, R, D, Ts′, T e′ >∈ IX ∧ Ts ≥ Ts′ ∧ Te ≤ Te′ ∧
@ Ts′′ ∈ [Ts′, T e′ − D] |

KX,τ ` have(R, (Ts′′, T s′′ + D), τ) ∧
(Ts′′ ≥ Te ∨ Ts′′ + D ≤ Ts)

KX,τ ` miss(R, (Ts, Te)) ↔
∃ < A, R, , , > ∈ IX | KX,τ ` miss(R, (Ts, Te), A)

KX,τ ` miss(R, (Ts, Te), A) ↔
∃ < A, R, , , >∈ IX | KX,τ 0 feas(A, (,)) ∧

KX,τ ∪ {obtain(R, (Ts, Te))} ` feas(A, (,)) ∧
@ (Ts′, T e′) ⊂ (Ts, Te) |
KX,τ ∪ {obtain(R, (Ts′, T e′))} ` feas(A, (,))

KX,τ ` indiff(R, (Ts, Te)) ↔
KX,τ 0 have(R, (Ts, Te), τ) ∧
∀(Tsj , T ej) | KX,τ ` miss(R, (Tsj , T ej)) →

Te ≤ Tsj ∨ Ts ≥ Tej

KX,τ ` avail(R, (Ts, Te)) ↔
KX,τ ` have(R, (Ts, Te), τ)∧KX,τ 0 need(R, (Ts, Te), τ)

