Extending a logic based one-to-one negotiation
framework to one-to-many negotiation

Paolo Torroni! and Francesca Toni?

L DEIS, Universita di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
ptorroni @deis.unibo.it
Department of Computing, Imperial College, 180 Queens Gate, SW7 London, UK
ft@doc.ic.ac.uk

Abstract. [13] presents a logic-based approach to multi-agent negotiation. The
advantages of such approach stem from the declarativeness of the model, which
allows to formulate and prove some interesting properties (such as termination
and convergence of a protocol), to the possibility of identifying and combining
varieties of agents, implementing different negotiation policies, and of forecast-
ing the behaviour of a system with no need for simulation. The work introduces
a language for negotiation that allows to cater for two agent dialogues, in a one-
to-one negotiation setting. Auctions are an example of one-to-many negotiation
mechanisms, where agents try to maximize their profit by buying items in com-
petition with other parties, or selling them to crowds of bidders. In this paper, we
show how the negotiation framework of [13] can be extended to accommodate
a suitable negotiation language and coordination mechanism (in the form of a
shared blackboard) to tackle one-to-many negotiation.

1 Introduction

Autonomous Agents and Multi-Agent Systems (MAS) have represented a hot topic of
Computer Science disciplines for the past ten and more years. They have often been
adopted as a metaphor to model autonomous entities capable of interacting and being
part of organizations or societies. The idea of making them intelligent asked for the
contribution of disciplines such as Artificial Intelligence (AI) [16]. Logic-based Al has
been playing a foreground role in the MAS community since the very beginning, e.g.
with the advent of the BDI model for agent beliefs, desires, and intentions [9].

Recently, computational logic has started to make a relevant contribution to the de-
velopment of MAS [10, 14]. Indeed, computational logic-based formalisms are a pow-
erful way to model and implement the agents’ knowledge and the reasoning of the
agent, that uses and possibly updates such knowledge. All these ingredients suit well a
MAS context, which is normally open, dynamic, and unpredictably evolving. Compu-
tational logic can contribute to modeling both individual agents and societies of agents,
and to providing operational semantics that can be straightforwardly used as a basis to
implement a system.

In [13,12], Sadri, Toni and Torroni introduced a computational logic-based ap-
proach to agent dialogue for negotiation of resources. Negotiation is one of the main
research streams in MAS, due both to the wide range of possible applications, spanning

electronic markets, task reallocation, and distributed resource management, just to cite
some, and to its strong commercial interest. In a logic setting, agents are given a logic-
based knowledge representation, including goals, intentions, and beliefs. When an agent
is missing a resource, it negotiates with another agent, in a dialogue-based framework,
requesting the missing resource and carrying out the dialogue by means of utterances,
or dialogue primitives. In the course of a dialogue, both agents could possibly modify
their own intentions, for instance as a consequence of a ‘better’ (i.e. less expensive)
plan that could arise during the dialogue. Agents decide which primitive to utter based
upon a computational logic-based proof procedure, that treats dialogue primitives as
‘hypotheses’ (or ‘abducibles’). Such hypotheses are singled out so that some given ‘ne-
gotiation policies’ are enforced. The policies are represented as ‘integrity constraints’
that need to be satisfied, as in databases and abductive reasoning.

In realistic applications, negotiation mechanisms need to cater for and exploit the
plurality of agents in societies. The agents looking for resources might want to choose
among several marketplaces, the agents providing resources might want to choose among
different possible buyers, and all agents, in general, might want to play as buyers and
sellers, in different contexts, according to their subjective needs and to the objective
situation. In this respect, auctions can be seen as negotiation patterns where agents do
not deal with each other in pairs, but rather compete in crowds for the achievement of
their individual goals. In auctions, agents try to maximize their profit by buying items in
competition with other parties, or selling them to selected agents in crowds of bidders.

In this paper, we show how to tackle one-to-many negotiation within the one-to-one
negotiation framework of [13]. The contribution of the paper is in the introduction of
a logic approach to automated auctions, and in particular in the extension of an exist-
ing framework and in the proposed implementation of the English auction protocol by
means of a program written in the extended language. One of the most innovative as-
pects of such approach is that it is operational, i.e., the logic that describes the agent
knowledge is a program that is implementable to build agent applications, whose prop-
erties can be studied and proven. We extend the negotiation language, and we introduce
a suitable coordination mechanism (via a shared blackboard). Although this is ongoing
work, we believe that such approach is a promising starting point for building up an
integrated logic-based negotiation framework, within which we aim to define and prove
properties that rule the marketplace, without resorting to simulation.

The paper is organized as follows: in Sections 2 and 3 we briefly discuss the one-to-
one negotiation language and framework, respectively, introduced in [13]. In Section 4
we introduce the concept of auctions, referring to some classical auction protocols in the
literature. Starting from the individual protocols, we draw a common schema driving
our choices in the design of the extended language. In Section 5 and 6 we show how to
extend the framework to tackle auctions, and we illustrate the extension by realizing a
particular protocol, the English auction. In Section 7 we draw some conclusions.

96

2 A Language For Negotiation

In this section we will briefly sketch the language for negotiation adopted in [13] and
give an example of a two-agent negotiation dialogue. In the next section, we will give a
flavor of how such dialogue can be generated within a computational logic setting.

In the following dialogue, inspired by [8], agent a asks agent b for a resource (a
nail), needed to carry out a task (to hang a picture). Being refused the requested re-
source, a asks b the reason why, aiming at acquiring additional information that could
help a to bargain for the resource or find an alternative resource to carry out the task.

tell(a, b, request(give(nail)), 1)

(
tell(b, a, re fuse(request(give(nail))),2)
tell(a,b, challenge(re fuse(request(give(nail)))),3)
tell(b, a, justi fy(re fuse(request(give(nail))), ~ have(nail)}), 4)

In general, a dialogue is a sequence of dialogue moves or primitives, where a prim-
itive is represented in the form of an atom in the predicate tell. Such predicate has
four arguments, respectively: the sender, the recipient, the subject, and the time of the
primitive. Time is understood as a transaction time, rather than actual time.

Notice that such primitives are tailored to the needs of a two-agent dialogue setting,
where, in particular, the recipient is one specific agent. No support for broadcast or
multi-cast is provided. However, the framework presented in [13], as described in the
next section, is independent of the concrete negotiation language. In Section 5 we will
introduce a language supporting multi-casting (via a blackboard) and allowing one-
to-many communication primitives. The language that we will propose for auctions is
again a set of primitives expressed in the form of tell predicates, with a fundamental
difference: the second argument can either be a single agent, or a group of agents.
We assume that agents can join groups, uniquely identified in the system. In particular,
such identification can be either universal, including all agents in the system, or can
be used to specify the group composed by the subscribers of a specific auction, as
we will see in the following. All of this is in line with the current research on agent
systems and interactions, e.g., with KQML. In fact, KQML provides support for multi-
casting in a very similar way. A difference with KQML is that in our setting we do
not need to introduce predicates other than tell. In fact, as we will see later, the (past)
dialogue is used by the abductive proof-procedure that generates the dialogue itself as
a monotonically growing knowledge base (see for instance the definition of predicate
on-sale in Section 6). In particular, we do not make use of non-monotonic primitives
such as the KQML untell, for all utterances keep holding in the utterer’s knowledge
base.

3 A Negotiation Framework

In addition to the negotiation language, the ingredients needed in building a dialogue
framework are: a knowledge representation formalism, a proof procedure for reasoning
automatically with the knowledge, and a communication layer. We will not get into de-
tails in the description of the knowledge representation and proof procedure on which

97

the agents base their reasoning, and we will mostly refer to [13]. In brief, as far as the
knowledge representation is concerned, we will assume that agents have a (declarative)
representation of goals, beliefs, and intentions, namely plans to achieve goals. As an
example, the knowledge of some agent a can be the following /C,:

B, domain-specific beliefs, e.g., is_agent(b), i_am(a), as well as domain-
independent beliefs, e.g., those implementing negotiation protocols and policies;
Ra: { have(picture), have(hammer), have(screwdriver,) };
Z.: { available({hammer, picture}), plan({obtain(nail), hit(nail),
hang(picture)},0), goal({hung(picture)}), missing({nail},0) };
D,: 0.
Go: hung(picture);

where B, stands for agent a’s beliefs, R, stands for resources, I, for intentions,
D, for (past) dialogue, and G, for goals.

The beliefs can include knowledge that can be used to generate plans. Here we do
not make any assumptions on how plans are generated, whether by a planner or from
existing libraries.

The beliefs also include dialogue constraints that express how agents should react
to dialogue moves of other agents. A very simple example of dialogue constraints is the
following:

tell(X, a,request(give(R)),T) A have(R,T)

= tell(a, X, accept(request(give(R))),T + 1)

This constraints reads as follows: ‘if agent a receives a request from another agent,
X, about a resource R that it has, then a tells X that it will accept the request’' A
formal specification for have and need is given in [13].

Sets of dialogue constraints express shared protocols and/or individual policies of
agents. Dialogues such as the one illustrated in the previous section can be generated
automatically within a computational logic setting, e.g. by means of an abductive proof
procedure executed within an agent cycle [5]. In computational logic [4], abduction is
a reasoning mechanism that allows to find suitable explanations to given observations
or goals, based on an abductive logic program. In general, an abductive logic program
is a triple (P, A, IC), where P is a logic program, A is a set of so-called abducibles or
hypotheses, i.e., open atoms which can be used to form explanations, and IC is a set of
integrity constraints, i.e. sentences that need to be satisfied by all explanations. Given a
goal g, abduction aims at finding a set of abducibles that, if used to enlarge P, allow to
entail g while satisfying IC.

The adoption of automatic proof procedures such as that of [1] or [3], supported
by a suitable agent cycle such for instance the observe-think-act of [5], implements a
concrete concept of entailment with respect to knowledge bases expressed in abduc-
tive logic programming terms. The execution of the proof procedure within the agent

! In our setting, a saying that it accepts X s request about R is equivalent to saying that a gives

X R: not being concerned with execution, we assume that once an agent tells that it will give
a resource, it will actually do it at some point in the future.

98

cycle allows to produce hypotheses (explanations) that are consistent with the agent in-
tegrity constraint, /C'. Constraints play a major role in abduction, since they are used to
drive the formulation of hypotheses and prevent the procedure from generating wrong
explanations to goals.

In [13], abduction has been used to model agent dialogue, with dialogue constraints
being represented as integrity constraints, and the beliefs being represented as abduc-
tive logic programs. Dialogue constraints are fired each time the agent is expected to
produce a dialogue move, e.g., each time another agent sends a request for a resource.
Such move is then produced as an hypothesis that must be assumed true in order to
keep the knowledge base satisfying the ICs. The use of abduction in the agent dialogue
context, as opposed to other (less formal) approaches, has several advantages, among
which the possibility to determine properties of the dialogue itself, and the one-to-one
relationship holding between specification and implementation, due to the operational
semantics of the adopted abductive proof procedure.

4 Auctions

Auctions could be interpreted as an alternative way to negotiate and retrieve resources.
They provide an alternative to one-to-one negotiation, e.g. the negotiation carried out
by means of dialogues as introduced in the previous section. Indeed, in a framework
that includes auctions as a negotiation mechanism, if an agent needs a resource, it can
either ask it to another agent in the system, or find out an auction where the resource is
sold and try to obtain it.

Differently from the general dialogue framework, in auctions the price of items
plays a major role. In particular, the main resource limit is on the initial budget of the
single bidders (otherwise agents would buy ar any price). The participants of an auction
are called auctioneer, if they sell resources, and bidders, if they compete against one
another to buy resources. Reasonably, we will assume that there are at least two bidders
(otherwise we simply have one-to-one negotiation). In the following, we will call a the
auctioneer, by, bs, . . ., b, the bidders.

In general, an auction consists of at least three steps, as shown in Figure 1.

Fig. 1. Basic steps of an auction

The announcement step is an utterance made by the auctioneer a, where it declares
that an item is on sale at a certain price, for a certain timeout. The bid phase is an offer
made by a bidder, who is willing to buy the item on sale for a certain price. The award
phase is a statement made by a to notify everybody that the item has gone?.

% In general, items could also be declared unsold. For the sake of simplicity, we will consider
this as a sub-case of this last award phase.

99

There are various kinds of auctions in literature. We will cite here only four of
them, that we consider representative, and in particular: the English auction, the Dutch
auction, the First Price Sealed Bid (FPSB) auction, and the Vickrey auction.

English auction In the case of the English auction, the price of the item that is currently
on sale is increased until there is only one bid. The highest bid wins. This behaviour can
be represented as in Figure 2, where there can be any number of bids before moving on
to the award.

D
Camounce Dbt s arwers

Fig. 2. English auction: price goes up, 1 bid at a time

Dutch auction In the case of the Dutch auction, the price of the item that is currently
on sale goes down until there is one bid. The first bid wins. This behaviour can be rep-
resented as in Figure 3, where the announcement can be repeated several times before
a bid is made.

D,
Camounce —s(_bia s overd

Fig. 3. Dutch auction: price goes down, 1 bid at a time

FPSB auction In the case of the First Price Sealed Bid auction, & bids are simultane-
ously made by £ bidders, £ < n. Bids are sealed, i.e., bidders do not know each other’s
bids. The highest bid wins. This behaviour can be represented as in Figure 4, where
the announcement is made once and & simultaneous bid are made. This protocol is in
general faster that the two previous ones, since it is guaranteed to terminate in three
steps.

Camounce e bid s award)

Fig. 4. FPSB auction: k bids are collected, k¥ < n + 1, highest wins

100

Vickrey auction In the case of the Vickrey auction, again, &k bids are simultaneously
made by £ bidders, k < n. Bids are sealed, i.e., bidders do not know each other’s bids.
The difference with the FPSB case is that the second highest bid wins. This behaviour
is not different from that represented in Figure 4,

It is worth to notice that, by a protocol point of view, Vikrey and FPSB auctions are
the same. In fact, the only difference is the final price that the winner pays, which can
play a role in terms of strategies, but not in terms of protocols.

Before the auction takes place, the auctioneer must declare which objects are about
to be sold, when the auction is starting, which kind of auction it is going to be (English,
Dutch, etc.), how long the fimeout is going to be, and so on. We could call the period
of such declarations the publishing phase. Then, auctions could be assigned unique
identifiers (IDs), that will be used by all those who need to refer to the auction.

In general, the auctioneer must know who is participating at the auction. We will
therefore assume that bidders subscribe to the auction before it starts* and form a group.
The group is named after the auction ID. After all the objects have been either awarded
or declared unsold, the auction is closed.

In general, we could represent the four protocols as a particular case of the one rep-
resented in Figure 5*:

Cpuptis —»(subscrive —sannounce A bid —s(award)

Fig. 5. General steps of an auction

It is clear that it is necessary to have a notion of timeout, as the whole auction
mechanism is based on it. If we implement auctions by means of dialogue primitives
with an associated transaction time, we still have to relate it to the actual time. To
this respect, the blackboard comes in hand, since it can be used to assign primitives
both an actual timestamp and a transaction time, and keep them bound somehow. In
the sequel, we will assume that agents are equipped with a predicate actual_time(
Transaction_time, Actual time) that keeps track of such relationship.

5 Extended Negotiation Language And Framework

The coordination space If we want to extend this framework to tackle auctions, we
need a language, and in addition to it we need a communication layer that provides

3 More generally, we could assume that bidders can subscribe up until the auction is closed, i.e.,
up until all the objects have been either awarded or declared unsold.

* We omit the closure phase for lack of space. Note that such phase does not play a role, anyway,
for the purposes of this paper.

101

a support for multi-casting. For this we will use a blackboard. Although we will not
commit to any particular blackboard or coordination framework, such as for instance a
tuple space can be, we will make on the blackboard some assumptions. In particular, we
assume that the blackboard is able to assign a transaction time to incoming messages,
to store transactions, to manage conflicts in case of multiple concurrently incoming
messages (for instance by allowing only one of them), and we will also assume that the
blackboard can be programmed in order to allow only those messages that stick to the
protocol. For instance, if an English auction is on, where price can only go up, and it
must be at least a certain percent higher than that of the previous bid, the blackboard
can be programmed to reject those primitives that represent bids that are below the
minimum threshold.

We also introduce in the framework a locking mechanism, implemented again within
the blackboard, that allows bidding only after obtaining the blackboard lock. This is ex-
pressed in the agent programs by a logical predicate, obtain_lock(at(Actual_time),
Auction_ID, Transaction_time). The semantics of such predicate is: true if the
agent obtains the right to write on the blackboard (i.e., to multi-cast) at time Actual_time,
the T'ransaction_time-th primitive of Auction_I D. An example of use of such pred-
icate is in Section 6.

Multi-cast primitives As opposed to dialogue primitives, the communication acts of
auctions must be multi-casted, which requires a suitable support, as we pointed out
previously. Therefore, we will assume that agents do not write directly in a blackboard,
not before obtaining from the blackboard the permission to write. In fact, the blackboard
will coordinate the agent requests, by allowing one message (primitive) at the time, and
by giving it a unique transaction time.

The format of multi-cast primitives must be different from that of one-to-one prim-
itives, since the recipient is in general not unique. As we already said, the second pa-
rameter will not be a single agent, but a group of agents. Multi-cast primitives will have
in general this format: tell(Sender, Group, Subject, Time), where Sender is an
agent, Group is a group of agent, intended to be the recipients of the message, Subject
expresses the content of the message, and Time is again a transaction time.

We are now ready to introduce a language for auctions, i.e., a set of allowed dia-
logue primitives that agents use to implement an auction:

— tell(Auctioneer, all®, publish(auction(Auction_ID), items({ i1, 42, ..., im
1), protocol (english | dutch | fpsb | vickrey), beginning_at(initial time),
timeout(2')), Time)

— tell(Bidder, Auction_I D, subscribe(Auction_ID), Time)

— tell(Auctioneer, Auction_I D, announce(Item, Price, Timeout), Time)

— tell(Bidder, Auction_ID, bid(Item, Price), Time)

— tell(Auctioneer, Auction_I1D, award(Item, Price, Bidder), Time)

> Here and in the following, all could mean agents all the agents known or reachable by the
auctioneer. We assume that the auctioneer has some visibility of the environment; we have not
dealt explicitly so far with such issue, though.

102

— tell(Auctioneer, Auction_ID, close, Time)

Given this language, an example of an English auction is the following®:

$

tell(a, all, publish(auction(auction,), items({ nail }), protocol (english),
beginning at(Jan 3% 2002, 14 : 30 GMT), timeout(2')), 1)

~ tell(by, a, subscribe(auction;), 2)

~ L

~ tell(a, auction, announce(nail, 100, 14), 13)
~ tell(by, auctiony, bid(nail, 100), 14)

~ tell(a, auction, announce(nail, 110, 16), 15)
~ tell(by, auction,, bid(nail, 110), 16)

~ tell(a, auctiony, announce(nail, 120, 18), 17)
~ tell(a, auctiony, award(nail, 110, by), 18) 7

In this example, the auctioneer starts with publishing the auction auction; for a
certain point in the future (Jan 3'",2002,14 : 30 GMT), and collects subscriptions.
Then it starts the auction by announcing the first (and only) item, a nail. Bidders keep
replying to further announcements, until a timeout is reached after the last one. We
could give similar examples for the other auctions, but we do not have enough space.

In the case of English and Dutch auctions, as in this example, the auctioneer an-
nounces the new (minimum) price and waits for a bid. If the timeout comes the auction-
eer posts in the blackboard the award message. We will assume that some aspects, such
as filtering unsuitable bids, are managed by the blackboard (bids for items not being
sold in that auction, bids from unsubscribed agents, bids for a price that is too low, . . .
will be rejected by the blackboard). We admit that this is a strong assumption on the
environment, and needs to be further investigated. Moreover, such behaviour hardwired
in the blackboard, could require a dynamic (re-)configuration. It is not obvious at all
who and how should to it. Another important issue, with this respect, is how to merge
such non-logical element within the logical framework.

We can assume of course that bidders can bid more than announced by the auction-
eer (highest bid wins anyway). This is up to the agent. In the case of FPSB and Vickrey
auctions, that we could not represent here, the timeout would be expressed in terms of
transaction time, as the current time +n, n being the number of expected bidders. This
is one more reason why it is required to subscribe an auction: n is actually the number of
subscribers. This could raise some problems, in that it would require some assumptions
on the presence of all subscribers for the whole duration of the auction, which is maybe
too strong in a multi-agent setting. Anyway, it is possible to relax this condition, and
define a protocol in which not all subscribers must bid. We could imagine that if there
are less bids than bidders (k < n), the auctioneer will be in charge to make sure that

6 See Appendix for more examples
" As we said before, we will not deal with the closure of auctions, which could be expressed by
a primitive such as tell(a, auctioni, close, 19), uttered by the auctioneer.

103

before too late (actual timeout) n messages are anyway posted in the blackboard, in or-
der to reach the (transaction) timeout. She will therefore put n — k messages atomically
together with the award message, just before it is published.

6 An Example: Implementation Of The English Auction Protocol

In this section, we will give here an example of a possible implementation of the En-
glish auction protocol. Due to the space constraints, we will only write the basic rules
and constraints of the two kinds of agents: the bidder and the auctioneer. Let us start
with the auctioneer program.

auctioneer (a) program:

on_sale(Item, Auction ID) +
tell(a, all, publish(auction(Auction_I D), items(Items),
protocol (Protocol), beginning_at(Initial time), timeout(Timeout)), Time)
A Item € Items
A actual time(Actual time)
A Initial time < Actual_time
A not timeout _expired(Item, Auction_I D, Timeout)
A not (tell(a, Auction_ID, award(Item, Price, Bidder), Timel)
A Timel < Time)

An item is on_sale if it is included in the item list of an ongoing auction, and the time-
out after the last bid has not expired.

timeout_expired(Item, Auction ID, Timeout) +
tell(a, Auction_I D, announce(Item, Pricel, Timeoutl), Timel)
A not (tell(a, Auction_I D, announce(Item, Price2, Timeout2), Time2)
A Time2 > Timel)
A actual time(Timel, Actual timel)
A actual time(now, Actual time)
A Actual time > Actual timel + Timeout

The timeout that refers to a certain item on sale at a certain auction is expired if now
is a later time than that of the last announcement, plus the declared T'imeout.

new_price(Price, New_price) < New_price is Price + 0.1 x Price

The auctioneer announces the new price of an item adding a ten percent to the last
price.
tell(Bidder, Auction ID, bid(Item, Price), Time)
A on_sale(Item, Auction_ID)
A new_price(Price, New_price)
A obtain_lock(at(now), Auction_ID, Time + 1)

104

= tell(a, AuctionID, announce(Item, New_price, Time + 2), Time + 1)

This constraints says that if a participant bids at time 7'ime, and the item in question
is still on sale, the auctioneer next (i.e., at Time + 1) announces such item for a new
price. Such announcement will hold up to Time + 2.

timeout_expired(Item, Auction ID, Timeout)
A tell(A, all, publish(auction(AuctionID), . .., timeout(Timeout)), . ..)
A tell(Bidder, Auction_I D, bid(Item, Bidder price), Time — 1)
A tell(A, Auction_I D, announce(Item, New_price, Time + 1), Time)
A Bidder_price > New_price
= tell(a, Auction ID, award(Item, Bidder_price, Bidder), Time + 1)

This constraints says that after the timeout has expired the highest bid wins, and there-
fore the bidder is awarded the item.

timeout_expired(Item, Auction ID, Timeout)
A tell(A, all, publish(auction(Auction ID), . .. timeout(Timeout)),)
A tell(A, Auction_I D, announce(Item, _, _), Time)
A not tell(_, Auction_I D, bid(Item,),)
= tell(a, AuctionID, award(Item,...,noone), Time + 1)

This constraints says that if there are no bids, the item is declared unsold.
bidder (b) program:

The bidder program is simpler, but it introduces two predicates whose implemen-
tation is not specified here, and will depend on the individual bidder programs (we
assume that each bidder may adopt a different policy from the others). Such predicates
are calculate_new_price and calculate_bid_time.

tell(a, Auction_ID, announce(Item, Price, Timeout), Time)
A have_subscribed(Auction_ID)
A not (tell(Participant, Auction_I D, Anything, Timel) A Timel > Time)
A calculate_new_price(Item, Price, New_price)
A calculate_bid_time(Auction_ID, Bid_time)
A obtain_lock(at(Bid_time), Auction 1D, Time + 1)
= tell(b, Auction_ID, bid(Item, New _price), Time + 1)

This means that if the auctioneer has announced an Item at a Price, at the (transaction)
time T'ime, and after that no other participant made any move, if the bidder b can calcu-
late a suitable price and can obtain the blackboard to bid at a certain time (Bid_time),
then b will bid at (transaction time) Tme + 1. The two above mentioned predicates and
the blackboard will decide whether the agent will actually bid or not.

105

have_subscribed(Auction_ID) +
tell(b, a, subscribe(AuctionI D), Time)

7 Discussion And Future Work

We have extended an existing framework for one-to-one agent negotiation to cope with
one-to-many negotiation, in the particular case of auctions. There is much ongoing work
on the negotiation area: those interested could refer to [11] for an introduction, and to
[6] and [2] for a perspective on state of the art methods and challenges.

An other existing approach to negotiation via dialogue, that makes use of an ar-
gumentation system, is that of [15], and more recently [7], where the authors adopt a
modal logic approach and focus on the mental states of agents that move towards an
agreement, and on the way to persuade a counterpart in order to foster cooperation.

As far as auctions, there is much work on mathematical models, and protocol com-
parison in terms of efficiency, stability, etc., but to the best of our knowledge, only a
little relate theoretically founded models to operational models, as in our case.

This is a preliminary work on the subject and needs to be further expanded in several
ways. The main issue, in our opinion, is how to tackle the various non-logical elements,
such as the initial time, the timeout, the blackboard lock, and merge them in the logical
framework that we propose. This is a need because auctions are intrinsically non-logical
in relying on the concept of timeout. As opposed to the case of dialogue primitives, in
an auction setting the trigger that fires a dialogue constraint and makes a primitive being
cast will necessarily depend not only on the existence of other incoming messages, but
also on the lack of such messages. That is, on the fact that a timeout is met.

However, in our framework, we manage to separate such non-logical features from
the logical reasoning bit, partly relegating them to the blackboard, partly implementing
them inside logical predicates used by the agent.

As future work, we would like to integrate within this framework the two negoti-
ation patterns, giving the agents the possibility to either retrieve the missing resources
by means of dialogues, or by means of auctions. We aim at defining a comprehensive
architecture in which an agent can choose to obtain a resource either through an auction
or through a ‘simple’ sequence of dialogues.

Another direction of research is that of policies. We consider it important to provide
the possibility to define policies that are orthogonal to the agent program used to multi-
cast primitives, and to the constraints in particular. For instance, before committing to
a bid, agents could reason in terms of available budget, need for other items, maximum
price that they intend to pay for the item, importance of the goal, attitude they may have
with respect to the other bidders, etc. Together with policies, strategies can be used to
maximize an agent’s payoff, e.g. agents can decide to bid as soon as possible, or as late
as possible, with the adopted policy.

We intend to study properties of auctions, when different policies and strategies
meet. Finally, we plan to give an implementation of this one-to-many framework, pos-
sibly in integration with the other dialogue-based negotiation framework.

106

Acknowledgements

We would like to thank Paola Mello, Maurelio Boari, and the anonymous referees, for
their precious comments, suggestions, and support.

References

10.

11.

12.

13.

14.

16.

. T. H. Fung and R. A. Kowalski. The iff proof procedure for abductive logic programming.
Journal of Logic Programming, 1997.

. N. R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Au-
tomated negotiation: Prospects, methods and challenges. International Journal of Group
Decision and Negotiation, 10(2), 2001.

. A. Kakas and P. Mancarella. On the relation between truth maintenance and abduction.
In T. Fukumura, editor, Proceedings of the first Pacific Rim International Conference on
Artificial Intelligence, PRICAI-90, Nagoya, Japan, pages 438443, 1990.

. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic programming.
Handbook of Logic in Al and Logic Programming, 5:235-324, 1998.

. R. A. Kowalski and F. Sadri. From logic programming to multi-agent systems. Annals of
Mathematics and Al, 1999.

. S. Kraus. Strategic Negotiation in Multi-Agent Environments. MIT Press, Cambridge, MA,
2000.

. S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through argumentation; a logi-
cal model and implementation. Artificial Intelligence, 104:1-69, 1998.

. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing.
Journal of Logic and Computation, 8(3):261-292, 1998.

. A. Rao and M. Georgeff. An abstract architecture for rational agents. In Proceedings of the

International Workshop on Knowledge Representation (KR’92), 1992.

S. Rochefort, F. Sadri, and F. Toni, editors. Proc. International Workshop on Multi-Agent

Systems in Logic Programming, in conjunction with ICLP’99, Las Cruces, New Mexico.

November 1999.

J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for Automated

Negotiation Among Computers. MIT Press, Cambridge, Massachusetts, 1994.

F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation: agent varieties and dialogue

sequences. In Proceedings ATAL’01, best paper award, Seattle, WA, August 2001.

FE. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation: an abductive

approach. In Proceedings AISB’01 Convention, York, UK, March 2001.

K. Satoh and F. Sadri, editors. Proc. Workshop on Computational Logic in Multi-Agent

Systems (CLIMA-00), in conjunction with CL-2000, London, UK. July 2000.

. K. P. Sycara. Argumentation: Planning other agents’ plans. In Proceedings 11th Interna-

tional Joint-Conference on Artificial Intelligence, pages 517-523. Morgan Kaufman, 1989.

G. Weiss. Multiagent Systems. MIT Press, 1999.

107

Appendix: More Examples Of Automated Auction: Dutch, Fpsb,
And Vickrey Auctions

An example of a Dutch auction is the following:

~ tell(a, all, publish(auction(auctions), items({ nail }), protocol(dutch),
beginning at(Jan 3% 2002, 14 : 30 GMT), timeout(2')), 1)

~ tell(by, a, subscribe(auctions), 2)

~

~ tell(a, auctions, announce(nail, 100, 3), 12)

~ tell(a, auctions, announce(nail, 90,4), 13)

~ tell(a, auctions, announce(nail, 80,5), 14)

~ tell(a, auctions, announce(nail, 75,6), 15)

~ tell(bz, auctions, bid(nail, 75), 16)

~ tell(a, auctions, award(nail, 75, bs), 17)
An example of a FPSB auction is the following (the price is encrypted; example

with 5 bidders):

~ tell(a, all, publish(auction(auctiong), items({ nail }), protocol(fpsb),
beginning_at(Jan 3**,2002, 14 : 30 GMT), timeout(2')), 1)

~ tell(by, a, subscribe(auctions), 2)

~ tell(a, auctions, announce(nail, 100,12), 7)

~ tell(by, auctiong, bid(nail, $105%), 8)

~ tell(bs, auctions, bid(nail, $103%), 9)

~ tell(b3, auctions, bid(nail, 104), 10)

~ tell(by, auctions, bid(nail, 106), 11)

~ tell(by, auctions, bid(nail, 101), 12)

~ tell(a, auctions, award(nail, 106, b2), 13)
An example of a Vickrey auction is the following (same bids as before):

~ tell(a, all, publish(auction(auctiony), items({ nail }), protocol (vickrey),
beginning at(Jan 3% 2002, 14 : 30 GMT), timeout(2')), 1)

~ tell(by, a, subscribe(auctions), 2)

~

~ tell(a, auctionys, announce(nail, 100, 12), 7)

~ tell(by, auctiony, bid(nail, $105%), 8)

~ tell(by, auctiony, bid(nail, 106), 11)

~

~ tell(a, auctions, award(nail, 105, ;3), 8)

108

