
A new framework for knowledge revision of
abductive agents through their interaction

(preliminary report)⋆

Andrea Bracciali1 and Paolo Torroni2

1 Dipartimento di Informatica, Università di Pisa
Via Buonarroti, 2 - 56127 Pisa, Italy

braccia@di.unipi.it
2 DEIS, Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna, Italy
ptorroni@deis.unibo.it

Abstract. The aim of this work is the design of a framework for the
revision of knowledge in abductive reasoning agents, based on interac-
tion. We address issues such as: how to exploit knowledge multiplicity
to find solutions to problems that agents could not individually solve,
what information must be passed or requested, how can agents take ad-
vantage from the answers that they obtain, and how can they revise
their reasoning process as a consequence of interacting with each other.
In this preliminary report, we describe a novel negotiation framework in
which agents will exchange not only abductive hypotheses but also meta-
knowledge, such as their own integrity constraints. Besides, we formalise
some aspects of such a framework, by introducing an algebra of integrity
constraints, aimed at formally supporting the updating/revising process
of the agent knowledge.

1 Multiple-source knowledge and coordinated reasoning

The agent metaphor has recently become a very popular way to model dis-
tributed systems, in many application domains that require a goal directed
behaviour of autonomous entities. Thanks also to the recent explosion of the
Internet and communication networks, the increased accessibility of knowledge
located in different sources at a relatively low cost is opening up interesting
scenarios where communication and knowledge sharing can be a constant sup-
port to the reasoning activity of agents. In knowledge-intensive applications,
the agent paradigm will be able to enhance traditional stand-alone expert sys-
tems interacting with end-users, by allowing for inter-agent communication and
autonomous revision of knowledge.

Some agent-based solutions can be already found in areas such as information
and knowledge integration (see the Sage and Find Future projects by Fujitsu),

⋆ This work is partially funded by the Information Society Technologies programme
of the European Commission under the IST-2001-32530 SOCS Project [1].

Business Process Management (Agentis Software), the Oracle Intelligent Agents,
not to mention decentralized control and scheduling, and e-procurement (Rock-
well Automation, Living Systems AG, Lost Wax, iSOCO), just to cite some.3

In order to make such solutions reliable, easy to control, to specify and ver-
ify, and in order to make their behaviour easy to understand, sound and formal
foundations are needed. For this reason, recent work in logic programming con-
siders multi-agent systems as an interesting and powerful paradigm. Work done
by Kowalski and Sadri [2] on the agent cycle, by Leite et al. [3] on combining
several Non-Monotonic Reasoning mechanisms in agents, by Satoh et al. [4] on
speculative computation, by Dell’Acqua et al. [5] on agent communication and
updates, by Sadri et al. [6] on agent dialogues, and by Ciampolini et al. [7] on
the coordination of reasoning of abductive logic agents, are only some exam-
ples of application of Logic Programming techniques to Multi-Agent Systems.
A common characteristic among them is that the agent paradigm brings about
the need for dealing with knowledge incompleteness (due to the multiplicity and
autonomy of agents), and evolution (due to their interactions).

In this research effort, many proposals have been put forward that consider
negotiation and dialogue a suitable way to let agents exchange information and
solve problems in a collaborative way, and that consider abduction as a priv-
ileged form of reasoning under incomplete information. However, such infor-
mation exchange is often limited to simple facts that help agents revise their
beliefs. In [7], for instance, such facts are modelled as hypotheses made to ex-
plain some observation in a coordinated abductive reasoning activity; in [4] the
information exchanged takes the form of answers to questions aimed at confirm-
ing/disconfirming assumptions; in [6] of communication acts in a negotiation
setting aimed at sharing resources. [5] and previous work of the same authors
present a combination of abduction and updates in a multi-agent setting, where
agents are able to propose updates to the theory of each other in different pat-
terns. In this scenario of collaboration among abductive agents, we envisage a
framework in which agents are able to exchange knowledge in various ways. Our
idea is to define a framework where agents can exchange information in the form
of predicates, theories, integrity constraints, and they do it as a result of a ne-
gotiation process. Negotiation is therefore about knowledge. Agents will be able
to revise their own constraints, for example by relaxing or tightening them.

In this way, the revision mechanism strongly exploits the interaction between
agents. This paper describes preliminary work, where we focus especially on
information exchange about integrity constraints. In doing so, we abstract away
from issues such as ontology and communication languages and protocols, and
we assume that all agents have a common ontology, and that they communicate
by using the same language. Agents will actively ask for pieces of knowledge, let
them be facts, hypotheses or integrity constraints, and agents will autonomously

3 A collection of excerpts of papers and web pages about industrial applications of
agent technology, including references to the above mentioned projects and applica-
tions, can be downloaded from the address: http://lia.deis.unibo.it/~pt/misc/
AIIA03-review.pdf.

2

http://lia.deis.unibo.it/~pt/misc/AIIA03-review.pdf
http://lia.deis.unibo.it/~pt/misc/AIIA03-review.pdf

decide whether and how to modify their own constraints whenever it is needed.
For instance, an agent, which is unable to explain some observation given its
current knowledge, will try to collect information from other agents, in the forms
mentioned above, and possibly decide to relax its own constraints in a way that
allows him to explain such an observation. Conversely, an agent may find out
that some assumptions that he made ought to be inconsistent (for instance, due
to social constraints), and try to gather information about how to tighten its own
constraints or add new ones which prevent him from making such assumptions.

The distinguishing features of the distributed reasoning revision methodology
that we envisage consist of a mix of introspection capabilities and communica-
tion capabilities. In the style of abductive reasoning, agents are able to provide
conditional explanations about the facts that they prove, they are able to com-
municate such explanations in order to let others validate them, and they are able
to single out and communicate the constraints that prevent from or allow them
to explain an observation. Finally, agents are able to revise their constraints,
according to those that may be proposed by others.

Below, we informally present a possible interaction among two agents which
leads them to modify their knowledge in different ways. This example will be
elaborated later, after that the necessary notation is introduced.

Example 1. Let us consider an interaction among two agents, A and B, having
different expertise about a given topic.
(1) A 6|= ¬f, b - Agent A is unable to prove (find an explanation for) the

goal (observation) “there is a bird that does not f ly”. . .
(2) A → B : ¬f, b - . . . hence it asks agent B for an explanation . . .
(3) B → A : ¬f, b ∆ - . . . which B returns, as a set ∆ of assumptions which

explain ¬f, b (e.g., ∆ = {p}: a penguin is a bird that
does not fly);

(4) A → B : IC∆ - A, driven by the assumptions suggested by B, is able
to determine a (significant) set IC∆ of constraints that
prevented him from assuming {¬f, b, p}, and therefore
from proving the goal (e.g., {¬f, b → false}: it is not
possible that a bird does not fly). A will communicate
to B the set IC∆;

(5) B → A : IC∆ - B is able to find a set IC∆ that relaxes the original con-
straints IC∆ and has been used in the proof for the goal
by B, e.g. {¬f, b,¬p → false} (it is not possible that
a bird does not fly, unless it is a penguin). B proposes
IC∆ to A;

(6) A⊖IC∆⊕IC∆
|= ¬f, b - A revises its constraints with those proposed by B, by

means of some updating operations, and it is able now to
prove its goal.

This brief example hides several non-trivial steps that involve deduction, in-
trospection, interaction, and revision. With this aim, we initially discuss these
aspects to illustrate the global picture, and then we focus on the integrity con-

3

straint revision process (understood within the overall framework). The long-
term goal of our research is the definition of the complete framework for dis-
tributed revision of agent knowledge.

The rest of this paper is organised as follows: Section 2 introduces Abduc-
tive Logic Programming, Section 3 discusses the above mentioned open points.
Section 4 presents the formal model we devised to address these open points;
there we define an algebra of constraints, constraint selection operators allowing
one to determine which constraints are relevant in a proof, and constraint up-
dating/revising operators. Possible applications of the framework are illustrated
in Section 5. Concluding remarks and future work are summarised in Section 6.

2 Background on Abductive Logic Programming

In this section we give some background on Abductive Logic Programming and
we introduce some notation about abductive agents.

An Abductive Logic Program (ALP) is a triple 〈T,A, IC〉, where T is a theory
(a set of predicate definitions), A is a set of predicates that we call “abducibles”,
and IC is a set of integrity constraints. Given an ALP 〈T,A, IC〉 and a goal G,
the initial goal or “observation”, abduction is the process of determining a set ∆

of abducible predicates (∆ ⊆ A), such that (the symbol |= denotes entailment):

T ∪ ∆ |= G, and
T ∪ IC ∪ ∆ 6|= ⊥.

If such a set exists, we call ∆ an abductive “explanation” for G in 〈T,A, IC〉:

〈T,A, IC〉
abd

|= ∆ G

Abduction is reasoning in presence of uncertainty, represented as the possi-
ble abducibles that can be assumed in order to explain an observation. In this
context, the set of integrity constraints IC of an ALP determines the assump-
tions which can coherently be made together. Informally speaking, IC limits the
choice of possible explanations to observations, or in other words, it rules out
some hypothetical worlds from those modelled by a given ALP.

2.1 Syntax and Semantics of Integrity Constraints

We consider integrity constraints having the following syntax:

ic ::= ⊥ ← Body

Body ::= Literal [, Literal]
Literal ::= Atom | ¬Atom

Constraints of the form: ⊥ ← x,¬x are left implicit in the agents’ abductive
logic programs, and they can be used to implement default negation.4

4 According to [8], negation as default can be recovered into abduction by replacing
negated literals of the form ¬ a with a new positive, abducible atom not a and by
adding the integrity constraint ← a, not a to IC.

4

Given an integrity constraint ic = ⊥ ← L1, . . . , Ln, we call body(ic) the
set of literals {L1, . . . , Ln}. Also, we denote singleton integrity constraints by
ic, ic1, ic2, ic′, ic′′, . . . , and sets of integrity constraints by IC, IC1, IC2, . . . ,
IC′, IC′′, Finally, we denote sets of literals by ∆, ∆1, ∆2, . . . , ∆′, ∆′′,
In the following, we will adopt the notation ← L1, . . . , Ln as a shorthand for
⊥ ← L1, . . . , Ln.

Intuitively, an integrity constraint ic = ← L1, . . . , Ln represents a restric-
tion, preventing L1, . . . , Ln from being all true all at the same time. If some of
the Lj in the body of ic are abducible atoms, ic constrains the set of possible
explanations that can be produced during an abductive derivation process.

Example 2. Let us consider agent A of Example 1. Its abductive program states
that something can be considered a bird if either it flies or it has feathers, while
it can be considered a mammal if it has hair. Finally, a dolphin is something
that swims and has no hair:

T =

b ← fe.

b ← f.

m ← ha.

d ← s,¬ha.

A = {f, s, fe, ha} IC =

{

← b,¬f

← d,¬s

}

In order to explain its observations, agent A can make assumptions according
to its set A, and, for instance, categorise a dolphin by assuming that it is able
to swim. Note how abducibles have no definitions. IC prevents A from having
a bird that does not fly or a dolphin that does not swim (together with all
the implicit integrity constraints). It is clear that there is no ∆ ⊆ A such that
T ∪ ∆ |= b,¬f and T ∪ ∆ ∪ IC 6|= ⊥, and hence, as supposed in point (1) of
Example 1 (in its informal language), A 6|= b,¬f .

We consider abductive agents to be agents whose knowledge is represented
by an abductive logic program, provided with an abductive entailment operator.
At this stage, we do not make assumptions on the underlying operational model.

3 Issues in a constraint revision framework

Example 1 has informally introduced some issues which a framework supporting
a distributed constraint revision process must address. In this section, we discuss
them in more detail. The next section will provide a better technical insight, by
presenting some preliminary results about how some of these issues could be
formally modeled.

3.1 Communication

Points (2), (3), (4) and (5) of Example 1 require communication between agents.
We are aware that the literature on this topic is huge. There is a large number

5

of existing proposals for agent communication models and languages, several
dedicated discussion forums such as the Workshop on Agent Communication
Languages and Protocols [9,10], and several conference tracks and special journal
issues on this topic. Here, we do not intend to propose a new communication
language or a new interaction model, but we assume that agents are able to
communicate according to some language and protocols, and that they have a
common ontology. The focus of the present work is rather on the content than
on the syntax, semantics, or pragmatics of the messages that agents exchange
with each other, or on the protocols which support at a lower level the knowledge
revision process that we envisage. In this section, we make some remarks about
communication in our framework from this perspective.

Assumption and constraint exchange. Point (3) requires that agents
are able to exchange the sets of assumptions they make. In general, existing
abductive agent frameworks deal with assumptions at a semantic level, but do
not consider assumptions as a first order object in the content of a message. For
instance, in [6], the messages themselves are modelled as abducible predicates,
but they do not predicate about assumptions. In the computational model of [7],
when agents cooperatively resolve a query, the computational model is in charge
of checking the global consistency of the assumptions made against the integrity
constraints of all the agent, but, still, agents can not, for instance, directly ask
other agents to check for the consistency of a given set of abducibles.

This enhancement with respect to the previous work done on the subject is
necessary in order to exploit assumptions in the process of determining significant
sets of constraints, like in points (3) and (4). In particular, agents can be required
to explain an observation, starting from a given set of assumptions, as A is doing
in points (3) and (4), determining the set IC∆. Similarly, it is also necessary to
communicate sets of constraints, points (4) and (5), which is not allowed in
existing abductive agent frameworks either, to the best of our knowledge, and
for which analogous considerations hold.

Identity discover. Starting from point (2), agent A establishes a conversa-
tion with agent B. This requires a mechanism allowing A to select B to speak
with. For instance, this could be accomplished by means of access mechanisms
to semi-open societies [11], such as facilitators or directory servers which let A

meet its possible partners. This kind of problem is not addressed in this pa-
per. Instead, we will restrict ourselves to a two-party setting, where agents are
already aware of each other.

Trust and agent hierarchies. Almost all interaction described in Exam-
ple 1 is based on relations of trust or dependency among agents, which could
be based on some form of reputation [12] or it can be determined by social ties
such as those given by a hierarchy. In particular, in the example, agent A and
B expose their assumptions and even their constraints, and agent A revises its
knowledge based on the view of the world of B. Similarly to the previous point,
we do not discuss here the mechanisms which justify such relations. The hypoth-
esis that cooperating agent will share parts of their knowledge is an assumption
that we have in common with other work of literature, such as [5] and [7].

6

Social constraints. We would like to make a final remark about the use of
communicating constraints within a society. Although integrity constraints and
assumptions are specific of abductive agents, in [13] an interaction framework
is proposed where integrity constraints are used to model interaction protocols.
Such protocols are not inside the agents but in a social infrastructure which
is outside the agents. In this setting, a society where certain interaction proto-
cols are defined by way of integrity constraints could notify such constraints to
newcomers, in order to help them behave according to the protocols. Or else, a
society could notify protocol updates to its members.

3.2 Proof of goals and relevance of integrity constraints

Constraint revision, as illustrated in Example 1, requires the capability to deter-
mine a set of constraints which are relevant for a given computation, either in the
sense that they contribute to defining a set of assumptions in a successful proof,
or because they make a proof fail. For instance, in point (4), A, exploiting the
explanation ∆ provided by B, determines the set IC∆ of integrity constraints
which prevent A from explaining its observation by the set of assumptions ∆

itself. Let ∆ = {p,¬f}. While the problem of determining significant integrity
constraints for a given proof is in general hard, we believe that it could be compu-
tationally viable to identify the set IC∆ = {← b,¬f} as relevant for the failure
of the query b,¬f ,given ∆ (for instance, by exploring the proof of b,¬f, p, i.e.
the proof of the initial goal together with ∆). The definition of a proof procedure
supporting similar analysis is one of our ongoing activities.

¿From a declarative perspective, relevant sets for a successful proof are for-
mally defined in Section 4.1. This definition is used, for instance, by agent B in
determining the set ¯IC∆ = {← b,¬f,¬p} which is relevant for the proof of the
query, and relaxes (see below) the set IC∆, points (4) and (5) of the example.

In general, there will be several alternative sets of relevant constraints for
the same query, e.g., because there are different alternative proofs for it. The
existence of a unique minimal set is not guaranteed either. For this reason, we
envisage that the knowledge revision process will have to go through a trial-and-
error search process for a suitable minimal sets. For instance, agents can iterate
a cooperative dialog, similar to that of Example 1, in which they propose to each
other a number of minimal significant sets, until they converge to a successful
proof, if there exists any. This is in line with the approach of [7] and [6]. In
Section 5, we illustrate a possible cycle which allows for such an interaction in
the form of a dialog.

3.3 Constraint hierarchies

Point (5) requires both the definition of the concept of relaxation of a set of
constraints, and the computational capability to determine, given a set IC, an-
other set IC′ that relaxes it. In order to address the former issue, we propose
an algebra of ICs, presented in Section 4.2, provided with a relaxation-based
partial order, while the latter issue has not yet been fully addressed.

7

Intuitively, a set IC′ of integrity constraints relaxes a set IC, IC <IC IC′,
if all the goals that can be proved with respect to IC can be also proved with
respect to IC′ (but not vice-versa).

The relaxing relation, in some basic cases, can be checked by means of a
simple necessary condition, namely a syntactical comparison. This happens when
the relations is the set inclusion partial order. More in general, the relation may
fail to be a partial order, in which case it is a partial pre-order, and checking
whether a set relaxes another one according to the definition of relaxing relation
may require more complex analysis, based on the semantics of the corresponding
ALP. This point is currently under investigation.

Conversely, the partial order can be also read as a tightening-based partial
order, i.e. IC′ tightens IC, IC′ <IC IC, when the goals that can be proved with
respect to IC′ are a subset of those that can proved with respect to IC. Hence,
the same formal model can be used to describe interactions, which, possibly
depending on the issues discussed in Section 3.1, may lead an agent to restrict
his own believes.

Finally, the partially ordered set of integrity constraints can be equipped with
operations for relaxing, tightening and more in general revising sets of integrity
constraints, as described in the next Section 3.4.

3.4 Constraint revision

Once that a relaxing IC′ has been found, it is necessary to be able to use it
in order to revise the constraint set IC of an agent, as it happens in point (6),
where A revises its own integrity constraints.

In general, only a subset of the integrity constraints of an agent will have
to be revised according to a relaxing or tightening operation. To this aim, we
have defined a relaxation operator which, given two sets of integrity constraints
ICa and ICb returns a third set of integrity constraints, IC′ = ICa

⊎

ICb which
relaxes ICa in case ICa <IC ICb. The definition of

⊎

can be found in Section 4.

The operator
⊎

is only a possibility that we considered. The definition of
other tightening and revising operations is under current investigation.

Example 3. After having explained in more detail the steps for constraint re-
vision, it is now possible to revise Example 1, according to the program of A

introduced in the Example 2 and the above discussed issues.

(1) A
abd

6|= ¬f, b -
(2) A → B : ¬f, b -
(3) B → A : ¬f, b {¬f, p} - {¬f, p} is the abductive explanation provided by B.
(4) A → B : {← b,¬f} - {← b,¬f} is the significant set of constraints that

prevents A from proving the query based on B’s as-
sumptions

8

(5) B → A : {← b,¬f,¬p} - B has generated {← b,¬f,¬p} as relaxation for
the significant set provided by A.

(6)
IC′

A =

{

← b,¬f,¬p

← d,¬s

}

A
abd

|= ∆ ¬f, b

- After the update, the relaxed IC′
A is shown. A

is able to prove its goal (We can safely assume
that p ∈ AA).

4 A formal model for constraint revision

In this section we illustrate some of the technical aspect we devised in order
to support the model for constraint revision that we informally discussed in
the previous section. Firstly, we define the set of integrity constraints that are
significant in a successful or failed proof; secondly, we present a partial order
of constraint sets according to a relaxing relation (that can be dually read as
a tightening relation); finally, we introduce an updating operator for revising a
(significant) set of constraints, which is based on the partial order presented.

4.1 Determining significant sets of constraints

Definition 1 characterises a minimal set of the constraints which have been in-
volved in a successful abductive proof, producing the minimal set of explanations
∆. All the constraints in the set are directly involved in the proof, indeed, as
soon as one of them is removed, a smaller set of explanations than the one sup-
posed to be minimal can be produced by a successful proof for the same goal
(i). Moreover, the set is required to be minimal (ii).

Definition 1. Let P = 〈T,A, IC〉 be an abductive logic program and G a goal,

such that 〈T,A, IC〉
abd

|= ∆ G (i.e., ∆ is a possible explanation for G in P). Let

us assume that ∆ is minimal, i.e. ∄ ∆̂ ⊂ ∆ such that 〈T,A, IC〉
abd

|= ∆̂ G.5 A set
of integrity constraints IC′ ⊆ IC is relevant with respect to P and G, written

IC′
rel (〈T,A, IC〉, G),

def
⇐⇒

∃∆′ ⊂ ∆ such that 〈T,A, IC \ IC′〉
abd

|= ∆′ G, and (i)

(IC′ is minimal) ∄ IC′′ ⊂ IC′ such that IC′′
rel (〈T,A, IC〉, G). (ii)

Example 4. Let us consider agent B of Example 1. It has a simple abductive
program, stating that something can be considered a bird if either it flies or it
is a penguin.

T =

{

b ← f.

b ← p.

}

A = {f, p} IC = {← b,¬f,¬p}

5 Otherwise the definition can be recast on the (supposed minimal) ∆’.

9

Agent B can assume that something flies or it is a penguin, according to its
set A, while IC prevents A from having a bird that does not fly unless it is a

penguin. Trivially, 〈T,A, IC〉
abd

|= {¬f,p} ¬f, b, and {¬f, p} is minimal. Moreover,

IC = {← b,¬f,¬p} rel (〈T,A, IC〉, ¬f, b), since

(i) 〈T,A, IC \ IC = ∅〉
abd

|= ∅ ¬f, b, and
(ii) ∄ IC′′ ⊂ IC such that IC′′ rel (〈T,A, IC〉, ¬f, b).

The previous example shows how Definition 1 characterises the set of con-
straints that B is able to propose to A in point (5) of our Example 1.

On the other hand, given a failing derivation 〈T,A, IC〉
abd

6|= G of an abductive
agent, it is also worth giving a characterisation of a (minimal) subset of IC such
that, once relaxed, or removed, allows G to be proved. This is the notion of
minimally relaxing set defined by Definition 2. For an example of minimally
relaxing set see Example 8

Definition 2. Let P = 〈T,A, IC〉 be an abductive logic program, and G a goal

such that 〈T,A, IC〉
abd

6|= G (i.e., there is no explanation for G in P). A set of
integrity constraints IC′ ⊆ IC is minimally relaxing P (towards explaining G),

written IC′
min relax (〈T,A, IC〉, G),

def
⇐⇒

∃∆ such that 〈T,A, IC \ IC′〉
abd

|= ∆ G, and (iii)

(IC′ is minimal) ∄ IC′′ ⊂ IC′ s.t. IC′′
min relax (〈T,A, IC〉, G) (iv)

4.2 A relaxing-tightening hierarchy of constraints

In this section, we define a partial ordering relationship among integrity con-
straints, and then we lift it to sets of integrity constraints. For this purpose, we
introduce a symbol <IC(to read: “more restrictive than”, or “less relaxed than”).
This (complete, under reasonable hypothesis) partial ordering is a specific in-
stantiation of the general notions of relaxation and tightening applied to set of
constraints, and it will be used in the next section for defining the operators of
revision.

Definition 3. Given a pair of integrity constraints, ici and icj,

ici <IC icj
def
⇐⇒ ∀∆,∆ ∪ {ici} 6|= ⊥ ⇒ ∆ ∪ {icj} 6|= ⊥.

Example 5. Let us consider the following constraints:

(ic1) ⊥ ← a, b,
(ic2) ⊥ ← a, b, c,

Then, ic1 <IC ic2.

10

We can generalize the ordering relationship, from pairs of integrity constraints
to pairs of sets of integrity constraints.

Definition 4. Given two sets of integrity constrains, ICi and ICj,

ICi <IC ICj
def
⇐⇒ ∀∆,∆ ∪ ICi 6|= ⊥ ⇒ ∆ ∪ ICj 6|= ⊥.

The ordering initially introduced between pairs of integrity constraints is
a special case of the more general ordering relation between pairs of sets. In
particular, from Definitions 3 and 4 it follows that:

Lemma 1. Given a pair of integrity constraints, ici and icj,

body(ici) ⊂ body(icj) ⇔ ici <IC icj (v)

{ici} <IC {icj} ⇔ ici <IC icj (vi)

If ICj is constituted by a single element, ICj = {icj}, we use the notation
ICi <IC icj to denote ICi <IC {icj}.

Example 6. By defining the zero element of the <IC relation as ic0 def
⇐⇒ ⊥ ←,

i.e. the integrity constraint which is never satisfied, it is easy to see that

∀ic. ic0 <IC ic.

Similarly, the one element is the constraint whose body is satisfied only if all the

(finitely many) abducibles have been assumed: ic1 def
⇐⇒ ⊥ ←

∧

i ai ∀ai ∈ A.
It holds

∀ic. ic <IC ic1.

Let us also consider the following constraints:

(ic1) ⊥ ← a, b,
(ic3) ⊥ ← c,¬b,
(ic4) ⊥ ← a, c, and the implicit constraint
(ic5) ⊥ ← b,¬b.

Then, {ic1, ic3, ic5} <IC ic4.

4.3 A constraint updating operator

We define an “update with relaxation” operator ICa

⊎

ICb, which updates the
set of integrity constraints ICa with respect to ICb, relaxing, whenever possible,
the constraints in ICa that are “less relaxed than” (<IC) those in ICb. More
precisely, given two constraints ica ∈ ICa and icb ∈ ICb, if ica <IC icb then
ica 6∈ ICa

⊎

ICb. The next Example 7, illustrates the use of the operator, whose
definition is straightforward for the basic cases 1. and 2. Further examples of
its usage in Section 5 will make more clear the rationale of its definition, in
particular when the set ICb has been determined by a collaborative agent as a
relaxation for explaining some facts.

11

Definition 5. Let ICa and ICb be two sets of integrity constraints. Then, the
update with relaxation of ICa by ICb, denoted as ICa

⊎

ICb, is defined as fol-
lows:

ICa

⊎

ICb
def
⇐⇒ ICa \ IC′

a ∪ ICb,

where IC′
a =

⋃

IC′′

a
⊆ICa

IC′′
a such that IC′′

a <IC
(min) icb for some icb ∈ ICb.

IC <IC
(min) ic is defined as follows:

IC <IC
(min) ic

def
⇐⇒

{

IC <IC ic

∄IC′ ⊂ IC such that IC′ <IC ic

We have two special cases of ICa

⊎

ICb:

1. given two integrity constraints, ica and icb,

{ica}
⊎

{icb} ⇐⇒

{

{icb}, if ica <IC icb

{ica, icb}, otherwise

2. given an integrity constraint ica and a set of integrity constraints ICb,

{ica}
⊎

ICb ⇐⇒

{

ICb, if ∃icb ∈ ICb such that ica <IC icb

{ica} ∪ ICb, otherwise

Example 7.
Given the following constraints: The following propositions hold:

(ic1) ← a, b.

(ic3) ← c,¬b.

(ic4) ← a, c.

(ic5) ← b,¬b.

(ic6) ← a, b,¬c.

(p1) ic1 <IC ic6;
(p2) {ic1, ic3, ic5} <IC

(min) ic4;

(p3) {ic6} = {ic1}
⊎

{ic6};
(p4) {ic1, ic6} = {ic6}

⊎

{ic1};
(p5) {ic4} = {ic1, ic3, ic5}

⊎

{ic4};
(p6) {ic3, ic4, ic6} = {ic1, ic3}

⊎

{ic4, ic6};
(p7) {ic4, ic5} = {ic1, ic3, ic5}

⊎

{ic4, ic5};

5 An example of application of our framework

In this section we show a possible instantiation of the general framework that
we envisage. We consider, for the sake of simplicity, a 2-agent setting. Agent a is
equipped with the abductive logic program 〈Ta,A, ICa〉; agent b with 〈Tb,A, ICb〉.
Whenever a fails to explain an observation G within its current abductive logic
program, it starts an interaction with b, in order to find a suitable relaxation of
its integrity constraints that allows him (a) to explain G. On the other hand, b

will have to reply to a’s request according to some internal policy.
We distinguish between two phases of the interaction between a and b: (i)

the process of asking for a piece of information, be it a set of assumptions, a set
of integrity constraints, a set of definitions, or a combination of them, and (ii)
the process of answering to incoming requests of that kind. As far as the first

12

point, we imagine that agents will act according to certain internal cycles and
policies. For the sake of clarity, and in order to keep the two things separate,
we will call cycle the sequence of steps related to the activity described as (i),
policy that related to the activity described as (ii).

5.1 Cycle

We define a predicate request(a, b, IC′
a, G) which an agent a will use to request

a set of constraints IC′
b from an agent b.

As we said earlier in Section 3, in general, there will be several alternative
sets of relevant constraints for the same query. For this reason, the knowledge
revision process will have to go through a trial-and-error search process for suit-
able minimal sets. For instance, agents can iterate a cooperative dialog, similar
to that of Example 1, in which they propose to each other a number of minimal
significant sets, until they converge to a successful proof, if any.

Here, we illustrate a possible cycle which allows for such an interaction in
the form of a dialog.

Cycle 1 Agent update cycle for an agent a

1: Find a minimal relaxation, IC′

a min relax (〈Ta,A, ICa〉, G)
2: repeat
3: Send request(a, b, IC′

a, G)
4: Wait for reply(b, a, IC′

a, G, IC′

b)
5: repeat
6: IC′′

a = ICa

⊎

IC′

b

7: if 〈Ta,A, IC′′

a〉
abd

|=
∆

G then
8: Update ICa by IC′′

a

9: else
10: Send request(a, b, IC′

a, G)
11: Wait for reply(b, a, IC′

a, G, IC1

b)
12: IC′

b ← IC1

b

13: end if

14: until 〈Ta,A, ICa〉
abd

|=
∆

G or IC′

b = ∅

15: if 〈Ta,A, ICa〉
abd

6|= G then
16: Find a new minimal relaxation, IC1

a min relax (〈Ta,A, ICa〉, G)
17: IC′

a ← IC1

a

18: end if

19: until 〈Ta,A, ICa〉
abd

|=
∆

G or IC1

a = ∅

We will refer to such a cycle as to Cycle 1. Its intuitive reading is the
following: whenever a has an observation G that he cannot explain, he will:

1. try and find a minimal relaxation IC′
a for G;

13

2. ask b whether he can tell him something about it (more details about b’s
reply are given below);

3. once a receives a reply from b, reply(b, a, IC′
a, G, IC′

b), if a is able to relax
his own constraints by means of IC′

b) and therefore explain the observation,
he will revise his knowledge accordingly;

4. otherwise, a will keep asking for different sets of integrity constraints un-
til either he manages to explain his observation, or b has no other sets of
constraints to communicate to him.

This is in line with the approach of [7] and [6]. In [7], the object of commu-
nication are the hypotheses, in the form of predicates. Groups of agents try to
explain an observation consistently with the integrity constraints of each other,
and re-iterate the whole computational process by proposing different sets of
constraints, until a fixpoint is reached. In [6], agents have a similar cycle when
they try to obtain the resources that they are missing. The purpose of defining
a cycle in this way is to be able to prove some properties about the outcome of
the interaction.

Indeed, one of the main motivations of this framework is being able to prove
properties about the outcome of agent interaction. In this case, a property that
we would like to obtain is: given two agents a and b, the former trying to relax his
constraints by adopting a specific cycle (such as Cycle 1), the latter responding
to a’s requests by following a specific policy (such as Policy 1), either b is
unable to explain a certain observation G, or it is possible for a to revise his own
integrity constraints based on b’s reply, and finally explain G using his revised
knowledge. This is subject for current work.

5.2 Policy

Upon receipt of a’s request, b will adopt some policy to put together a set of
constraints in reply. We use the predicate: reply(b, a, IC′

a, G, IC′
b) to indicate

b’s reply to a’s request. Policy 1 is one particular policy, defined for an agent
b. Its intuitive reading is the following: whenever b receives a message of kind
request(a, b, IC′

a, G) from an agent a, b will do the following:

1. try and find an abductive explanation for G;
2. single out a minimal subset IC′

b of integrity constraints in ICb, which are
relevant for such an explanation, and which b has not yet communicated to
a by means of reply(b, a, IC′

a, G, IC′
b);

3. communicate a such a set IC′
b: reply(b, a, IC′

a, G, IC′
b)

This policy is only one example. Other ones are indeed possible. In particular,
while in this work we are concerned with the exchange of information about
constraints, it could also be the case that b’s explanation is not by any constraint
of a’s, and that a is unable to explain G only because a is missing some definition
which b instead knows.

We are currently studying policies such as Policy 1, expressing the semantics
of a reply, in order to be able to prove results about the evolution of knowledge
of agents in some specific settings, as we discussed above.

14

Policy 1 Agent policy of an agent b for replying to a request(a, b, IC′
a, G)

1: if 〈Tb,A, ICb〉
abd

6|= G then
2: IC′

b = ∅
3: else
4: IC′

b is a subset of ICb with the following properties:
(i) IC′

b rel (〈Tb,A, ICb〉, G);
(ii) ∃ica ∈ IC′

a, icb ∈ IC′

b such that ica <IC icb

(potentially, IC′

b could be exploited to relax some constraints);
(iii) IC′

b has not been yet communicated to a as a reply to request(a, b, IC′

a, G)
(to prevent b from proposing he same IC′

b twice in reply to the same request
of a’s);

5: if such a subset cannot be found, then IC′

b = ∅
6: reply(b, a, IC′

a, G, IC′

b)
7: end if

Example 8. Let us consider again a slight modification of Example 1, where the
set of abducible predicates is {b, f, p, s} plus all the negated literals, and the
abductive logic programs of A and B are as follows (both theories define the
predicate animal):

PA = 〈TA,A, ICA〉 PB = 〈TB ,A, ICB〉

TA

{

a ← b
}

ICA

{

(ic1) ← b,¬f.
}

TB

{

a ← b
}

ICB

{

(ic2) ← b,¬f,¬p.

(ic3) ← d,¬s.

}

Let us assume that both A and B follow Cycle 1 to request relaxations of
constraints and Policy 1 to answer to incoming requests. Finally, we assume
that at some point A makes the observation G = {b,¬f}. Then, the behaviour
of the system {A,B} is the following:

– (1) PA

abd

6|= {¬f, b}. At this point, following Cycle 1, A looks for a minimal
relaxation of its constraints, and it finds it in {ic1} = {← b,¬f}:

{← b,¬f} min relax (PA, G)

– (2) A asks B a set of relevant integrity constraints of his, that are relevant
for the explanation of G:

request(a, b, {← b,¬f}, {¬f, b});

– (3) Upon receipt of A’s request, according to Policy 1 B verifies that he is

able to prove G: PB

abd

|= {b,¬f,p} {b,¬f}. B finds a set of integrity constraints

IC′
B = ic2 that are relevant to A’s request:

{← b,¬f,¬p} rel (PB , {b,¬f}),

15

and indeed {← b,¬f} <IC {← b,¬f,¬p}. At this point, B replies to A’s
request by communicating IC′

B :

reply(a, b, {← b,¬f}, {¬f, b}, {← b,¬f,¬p});

– (4) A generates the set IC′′
A = {← b,¬f,¬p} as a revision of its own ICA by

IC′
B: IC′′

A = ICA

⊎

IC′
B . Since 〈TA,A, IC′′

A〉
abd

|= {b,¬f,p} {b,¬f}, A updates
his own abductive logic program.

6 Concluding remarks

In this work, we have described a framework for agent interaction where the
object of interaction is the agent knowledge at different levels. We have con-
sidered the case of abductive agents that are capable to formulate assumptions
to explain some observations. The agent knowledge is coded into an abductive
logic program, consisting of a theory, a set of abducible predicates, and a set
of integrity constraints. Indeed, abduction, which we considered as representing
the entire agent knowledge, could be part of a more comprehensive agent archi-
tecture, like that of computees [1], which allows for multiple forms of reasoning
and knowledge representation within an agent.

In this work, we discuss about the characteristics of an interaction framework
that can be used to exploit the abductive reasoning of a possibly more complex
agent. Agents exchange information about the assumptions that they make in
order to explain observations, and the integrity constraints used during their rea-
soning. Integrity constraints “shape” the reasoning processes of agents by ruling
out the set of explanation which are considered inconsistent. Exchanging con-
straints corresponds to revise the reasoning process. The methodology presents
some difficulties that we singled out, like understanding the role of sets of con-
straints in a proof, defining constraint revising mechanisms, or design suitable
interaction schemata for the collaboration of agents within a society.

We identified some issues that must be tackled by such a framework, both
with respect to the kind of communication required and the kind of agent rea-
soning involved in the revision process. We instantiated the general framework
by choosing a specific syntax for abductive logic programs, defining a partial
ordering relation among sets of integrity constraints, and proposing a specific
revision operator. Our choices have been motivated by a running example in-
spired from literature work on nonmonotonic reasoning. In the last section of
this paper, we show some ongoing work that we are doing towards applying
the framework to specific interaction patterns, and we comment on the kind of
properties that we want the framework to exhibit. An issue that will have to be
investigated is the computational complexity of such interaction patterns, both
for what concerns (i) the computational cost of proceeding in the protocol (i.e.,
by finding a minimal relaxation), and (ii) the properties related to the protocol
itself, such as guaranteed termination and convergence. In doing so, we plan to
build on results from literature, such as [14,15] for (i), and [16] for (ii).

16

This work represents a proposal for a framework to tackle issues that we con-
sider important in multi-source knowledge-intensive applications, and to the best
of our knowledge its approach is original. In the future, we intend to complete the
formalisation of the aspects that are not already covered by our model. For in-
stance, it seems interesting to work on the definition of further revision operators
and on giving a declarative semantics to some specific patterns of interaction,
such as the one suggested in Section 5, and, also, to provide a computational
counterpart to it.

References

1. SOCS: Societies Of ComputeeS (SOCS): a computational logic model for the de-
scription, analysis and verification of global and open societies of heterogeneous
computees. http://lia.deis.unibo.it/research/socs

2. Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence 25 (1999) 391–419

3. Leite, J.A., Alferes, J.J., Pereira, L.M.: MINERVA: A dynamic logic program-
ming agent architecture. In: Intelligent Agents VIII: 8th International Workshop,
ATAL 2001. LNAI, Vol. 2333. Springer-Verlag (2002)

4. Satoh, K., Inoue, K., Iwanuma, K., Sakama, C.: Speculative computation by ab-
duction under incomplete communication environments. In: Proceedings of the 4th
International Conference on Multi-Agent Systems, IEEE Press (2000) 263–270

5. Dell’Acqua, P., Nilsson, U., Pereira, L.M.: A logic based asynchronous multi-agent
system. Electronic Notes in Theoretical Computer Science 70(5) (2002)

6. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for
negotiating agents. In: Proceedings of the 8th European Conference on Logics in
Artificial Intelligence (JELIA). LNCS, Vol. 2424. Springer-Verlag (2002) 419–431

7. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and
competition in ALIAS: a logic framework for agents that negotiate. Annals of
Mathematics and Artificial Intelligence 37 (2003) 65–91

8. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In:
Proc. 6th ICLP, MIT Press (1989) 234–255

9. Dignum, F., Greaves, M., eds.: Issues in Agent Communication. In: Issues in Agent
Communication. LNCS, Vol. 1916, Springer-Verlag (2000)

10. Huget, M.P., Dignum, F., eds.: Proceedings of the AAMAS Workshop on Agent
Communication Languages and Conversation Policies (2003)

11. Davidsson, P.: Categories of artificial societies. In: Engineering Societies in the
Agents World II. LNAI, Vol. 2203. Springer-Verlag (2001) 1–9

12. Dellarocas, C.: The design of reliable trust management systems for online trading
communities (2002) Working paper. Available electronically.

13. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85 (2003)

14. Eiter, T., Makino, K.: On Computing all Abductive Explanations. In: Proc.
AAAI’02, Edmonton, Alberta, Canada. (2002) 62–67

15. Lin, F., You, J.: Abduction in logic programming: a new definition and an abduc-
tive procedure based on rewriting. Artificial Intelligence 140 (2002) 175–205

16. Torroni, P.: A study on the termination of negotiation dialogues. In: Proc.
AAMAS-2002, Part III, ACM Press (2002) 1223–1230

17

http://lia.deis.unibo.it/research/socs

