
Coordinating the Safe Execution of Tasks
in a Constrained Multi-Agent System

Anna Ciampolini, Paola Mello,
Paolo Torroni

DEIS, Università di Bologna
V.le Risorgimento 2, 40136 Bologna, Italy

{aciampolini, pmello,
ptorroni}@deis.unibo.it

Evelina Lamma
Dipartimento di Ingegneria

Università di Ferrara
Via Saragat 1, 44100 Ferrara, Italy

elamma@ing.unife.it

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Design, Languages

Keywords
Multi-Agent Systems, Formalisms and logics, Logic program-
ming, Service composition, Task Execution

1. INTRODUCTION
The metaphor of software components as agent societies

is appealing for many reasons, that made it very popular,
but there are some obstacles to its applications to prob-
lems such as software engineering. According to [2], ‘there
are two major drawbacks associated with the very essence
of an agent-based approach: (1) the patterns and the out-
comes of the interaction are inherently unpredictable; and
(2) predicting the behaviour of the overall system based on
its constituent components is extremely difficult (sometimes
impossible) because of the strong possibility of emerging be-
haviour.’ This could be a drawback not only for software en-
gineering. In fact, the need for making agents ‘predictable’,
and – for most applications – as deterministic as possible,
is indeed in contrast with the concept itself of autonomy.
Nonetheless, it is reasonable to believe that societies (of
agents) can only exist as long as the individuals’ autonomy
does not represent a threat for the other individuals, and for
the society in general. Therefore, the important counterpart
of autonomy is represented by private constraints and public
laws, that can make the agents, if not predictable, at least
not colliding with each other needs and constraints. We call

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02,July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

‘safe’ the execution of tasks in an agent system that does
not violate any of the constraints in the system itself.

Much work has been done towards safety ensuring in agent
systems, especially for inherently open systems such as mo-
bile agent systems, where mobile agents could move to re-
mote machines. For instance, a typical problem in this area
is, from the hosting system viewpoint, the problem of enforc-
ing some authorization policy, and make sure that hosted
external agents do not consume more resources than are al-
lowed. From the mobile agent viewpoint, the problem is
instead to ensure that it can have the right resources that
it needs in order to carry out a certain task. In this pa-
per, we tackle the problem of ensuring that the execution of
tasks in a constrained multi-agents setting is consistent with
respect to its constraints. We propose a formalism, whose
syntax and operational semantics is detailed in [1], that we
use to express the way agents can coordinate the requests
of services, and to verify that they do not collide with each
other’s conditions. We propose some operators, that could
be mapped, in a concrete implementation, into a library of
the language(s) used to encode the agents in the system. It
is possible to prove [1] that, if the abstract machine underly-
ing the agent code implements such operational semantics,
all requests involving integrity constraints are allowed only
if no constraint in the system is violated. In doing that, each
agent performs a consistency check only within its own (pri-
vate) set of constraints. That is, we ensure the consistency
of the constraints in the whole system, without each agent
needing to disclose its constraints to other agents.

2. FORMALISM
An agent is a triple < P, S, IC >, representing a program

P written in a language that allows the definition of func-
tions, a set S of such functions called services, and a set IC
of integrity constraints. The services s ∈ S are annotated
with pairs < s, δ >, that represent the agent’s denotation,

i.e., the set Den(A)
def
= {< s, δ >: s is locally provided by A

under the conditions δ and δ∪IC{A} 2 ⊥}. We assume that
Den(A) is sound and complete with respect to the notion of
local computation. We do not make assumptions on the syn-
tax of the agent programs, services, and ICs, although we
assume that the agents are provided with a mechanism, that
we call ‘local consistency check’, that is able to determine if
the constraints are violated.

Our formalism allows to express collaborative / competi-
tive service requests; the operators that we use are the fol-
lowing: (i) > is the communication operator; (ii) & is the
collaborative coordination operator; (iii) ; is the competitive
coordination operator; (iv) ↓ is the local execution opera-
tor. Such operators are part of expressions, enclosed in the
agent programs, which are evaluated when such services are
needed by the agents, in what we call a successful (or unsuc-
cessful) top-down derivation. A successful top-down deriva-
tion for an expression F that describes the request for a
service made by an agent A, and returns a set of conditions
δ and a bunch B of agents dynamically involved in the ser-
vice, can be traced in terms of a (finite) tree such that: (i)
the root node is labeled by A `B

δ F ; (ii) the internal nodes
are derived by using, backwards, the inference rules defined
in [1]; (iii) all the leaves are labeled by the empty formula,
or represent a successful local computation. For instance,
a formula including a collaborative operator A `B

δ f & F
develops into three branches (sub-trees), one for proving f,
another one for F and a last one for the consistency check.
Due to lack of space, we will only provide here some exam-
ples. We label the agents A0 . . . An. Let the following
expression be enclosed in an agent program, say A0:

A0 > ↓ s1 ; A1 > ↓ s2
It means that A0 must either perform a local service, s1, or
ask agent A1 for service s2. Should both service be avail-
able, possibly under different conditions, the system will se-
lect non-deterministically only one of them. Let us consider,
now, the following expression, also embodied in agent A0’s
program, representing a collaborative request composed of
two different sub-requests, whose conditions must be coher-
ent with one another:

A1 > ↓ s3 & A2 > ↓ s4
Agent A0 asks agent A1 for the service s3 and A2 to for
the service s4; after both A1 and A2 reply to A0 by giv-
ing each a set of conditions for the requested service, the
result is obtained by merging such sets of conditions in a
unique consistent set, with respect to the bunch of agents
(A0, A1, and A2) dynamically considered along the com-
putation. Such set could be bigger than the union of the
parts, due to additional constraints that are fired in the
cross checking phase. The key concept, in the process of
ensuring safe execution, is that of consistency derivation.
We also define a concept of ‘local consistency’, and adopt

the following notation: A
l−cons δ ∆, where ∆ is a set of

conditions. By ‘local consistency’ we mean that ∆ is con-
sistent with agent A’s integrity constraints, IC, returning a
(possibly enlarged) set of conditions δ.

3. RESULTS
The formalism we propose comes together with some re-

sults, that hold provided that the following two properties
also hold for the consistency derivation.1

Property 1 Given an agent Ai and a set of conditions δ,

Ai
l−cons δi δ ⇒ δi ∪ ICi 2 ⊥

where ICi represents the integrity Ai’s constraints.

1Although our system does not rely upon a logic system,
there exist in literature some proof procedures that imple-
ment a local consistency derivation, such as [3], some of
which are proved sound and complete.

This means that, if there exists a local consistency derivation
for δ in Ai that returns a set of conditions δi, then δi is
consistent with the integrity constraints of Ai itself.

Property 2 Given an agent Ai and a set of conditions δ,

∀δ : δ ∪ ICi 2 ⊥ ⇒ ∃δi : Ai
l−cons δi δ ∧ δi ⊇ δ

where ICi represents the integrity Ai’s constraints.

This means that, if a set of conditions δ is consistent with
the integrity constraints of an agent Ai, then there exists
a local consistency computation for δ in Ai itself, which
possibly adds some new conditions to δ, returning δ′ ⊇ δ.

It turns out that, for any successful top-down derivation,
under the assumption of soundness of the local consistency
derivations (Prop. 1), the computed conditions satisfy all
the integrity constraints of the bunch of agents dynamically
involved in the service in question. This implements in a
sense the introduced notion of safe execution.

Theorem 1 Let A be an agent and F an expression that
possibly describes the request for a service. If there exists
a successful top-down derivation for F in A, which returns
a set of conditions δ and the bunch of agents B, then the
computed set δ is consistent with the integrity constraints
of the bunch B. Formally: A `B

δ F ⇒ δ ∪ ICB 2 ⊥.

It is also possible to prove a completeness theorem for a
subset of the possible expressions occurring in a top-level
request. The completeness theorem ensures that, if a δ can
be found, satisfying the integrity constraints of a bunch of
agents, and it belongs to the meaning of some agent, as
defined below, then there exists an expression F and a suc-
cessful top-down derivation for F in A leading to the bunch
B of agents, and to conditions δ.

Theorem 2 Let B be a bunch of n agents, B, s a service
and δ a set of conditions.
∀B = {A1, . . . , An},∀ < s, δ >∈ Den(Ai), Ai ∈ B : δ ∪
ICB 2 ⊥ ⇒ ∃F, A ∈ B : A `B

δ̂
F ∧ δ̂ ⊇ δ where F is an

expression occurring in a top-level request.

In a similar way it is possible to give the proofs referring
to other kinds of formula. We aware that this work tackles
only part of the problems involved in multi-agent systems,
but our approach has the characteristics that could allow
its future integration in a more comprehensive multi-agent
setting. In the future, we intend to provide a concrete im-
plementation of the above described operators, and write a
library that extends a virtual machine. We would like to
make some experiments, and check if our idea represents a
viable approach. We would also like to study the complexity
implications of such mechanisms.

4. ACKNOWLEDGMENTS
This work was partially supported by the SOCS project,

funded by the CEC, contract IST-2001-32530.

5. REFERENCES
[1] A. Ciampolini, E. Lamma, P. Mello, and P.Torroni.

Coordinating the safe execution of tasks in a constrained
multi-agent system. Tech. Rep. DEIS-LIA-01-009, 2001.

[2] N. R. Jennings. On agent-based software engineering.
Artificial Intelligence, 117(2):277–296, 2000.

[3] A. C. Kakas and P. Mancarella. Generalized stable models:
a semantics for abduction. In Proc. 9th ECAI, 1990.

