
A study on the termination of negotiation dialogues

Paolo Torroni
DEIS, Università di Bologna

V.le Risorgimento 2
40136 Bologna, Italy

ptorroni@deis.unibo.it

ABSTRACT
Dialogue represents a powerful means to solve problems us-
ing agents that have an explicit knowledge representation,
and exhibit a goal-oriented behaviour. In recent years, com-
putational logic gave a relevant contribution to the devel-
opment of Multi-Agent Systems, showing that a logic-based
formalism can be effectively used to model and implement
the agent knowledge, reasoning, and interactions, and can
be used to generate dialogues among agents and to prove
properties such as termination and success. In this paper,
we discuss the meaning of termination in agent dialogue, and
identify a trade-off between ensuring dialogue termination,
and therefore robustness in the agent system, and achieving
completeness in problem solving. Then, building on an ex-
isting negotiation framework, where dialogues are obtained
as a product of the combination of the reasoning activity of
two agents on a logic program, we define a syntactic trans-
formation of existing agent programs, with the purpose to
ensure termination in the negotiation process. We show how
such transformations can make existing agent systems more
robust against possible situations of non-terminating dia-
logues, while reducing the class of reachable solutions in a
specific application domain, that of resource reallocation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence — Intelligent agents, Multiagent systems ; I.2.3
[Artificial Intelligence]: Deduction and Theorem Prov-
ing—Logic programming

General Terms
Design, Languages

Keywords
Multi-Agent Systems, Negotiation, Dialogue, Termination,
Computational Logic, Abduction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02,July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

1. INTRODUCTION
Dialogue is one of the most flexible interaction patterns in

Multi-Agent Systems, being something between completely
fixed protocols and totally free conversations [4]. Intuitively,
a dialogue is not a (purely reactive) question-answer se-
quence of a client-server architecture framed in a rigid pro-
tocol, but is rather a kind of interaction grounded on an ex-
pressive enough knowledge representation. Dialogues start,
in general, from the need to achieve an explicit goal. The
goal of initiating a dialogue could be for example to persuade
another party, to find an information, to verify an assump-
tion, and so on [18]. In the case of negotiation dialogues,
agents need to negotiate because, for instance, they operate
in an environment with limited resource availability, and the
goal of a dialogue is to obtain a resource. This general idea
applies to different scenarios with different meanings.

In recent years, computational logic gave a relevant con-
tribution to the development of Multi-Agent Systems [13,
5], and proved effective to model and implement the agent
knowledge, reasoning, and interactions. Work on argumen-
tation and persuasion, that under certain circumstances are
considered suitable techniques and strategies to support con-
versation and goal achievement, led to many argumentative
frameworks [1, 10, 12]. Such techniques and strategies of-
ten try and embrace very hard problems, and result in very
good descriptive models, but lack most of the times an ex-
ecution model. In [15], Sadri et al. described a logic-based
approach to negotiation which does not take into account
persuasion and argumentation, but which on the other hand
allows for proving properties such as termination, correct-
ness and completeness. The strength of such approach is
in that it proposes an execution model that can be used to
achieve an implementation of the system.

In this paper, we tackle the problem of termination of
agent dialogues. The main contribution of this work is in
the definition of a mechanism that ensures dialogue termina-
tion. Our aim is to make agents robust against the threat of
non-termination, when they are involved in dialogues with
other parties whose programs may be unknown to them.
We ground this work on a framework formally defined in
[14], where agent dialogues are obtained as a product of the
combination of the individual reasoning activity of pairs of
agents, while each agent performs an abductive derivation
on a logic program. We study the properties that must hold
for agent programs to ensure termination of local reasoning.
Building on these results, and extending them to the case of
multi-agent reasoning, we show which properties of the agent
programs guarantee termination in the negotiation process.

We propose a mechanism to automatically transform the
agent programs and increase their robustness against some
or all possible threats of non-termination. For this purpose
we define three different kinds of transformation, providing
three different levels of robustness. The three degrees reflect
a trade-off between ensuring termination of dialogues, and
therefore robustness in the agent system, and on the other
hand achieving completeness in problem solving.

The paper is organized as follows. In Section 2, we dis-
cuss the meaning of termination in agent dialogue, and give
some motivating examples to show how such ideas apply in
practice to a concrete case of negotiation dialogue. In Sec-
tion 3, we present the negotiation framework of [14], and
give some basic notions about termination with respect to
the IFF proof-procedure for abductive reasoning adopted
by the agents in the framework. In Section 4, we define
a mechanism to ensure dialogue termination and show, by
means of formal results, how such a mechanism can be used
to make the agents robust against any possible situation
of non-terminating dialogue, in the specific application do-
main of resource reallocation. We prove a theorem that
determines a bound in the maximum length of a dialogue,
measured in terms of number of exchanged messages, and
we extend such result to dialogue sequences. Conclusions
follow.

2. AGENT DIALOGUE TERMINATION:
ROBUSTNESS VS. COMPLETENESS

In [3], agent societies are categorized in terms of open-
ness, flexibility, stability and trustfulness, and it is claimed
that whereas open societies support openness and flexibil-
ity, closed societies support stability and trustfulness. The
author suggests two classes of societies (semi-open and semi-
closed) that balance the trade-off between these aspects, be-
cause in many situations there is a need for societies that
support all of them.

In the case of a dialogue, the problem of determining such
trade-off still holds, because the dialogue can be used as
a means to let heterogeneous agents communicate, despite
the differences among them, without necessarily sticking to
a given protocol. On the other hand, if we let agents openly
join societies, with no control on the individuals that ac-
cess them, problems could arise from their diversity. For
instance, dialogues can last forever.

Let us start by describing what we intend by dialogue,
and let us do it by example, before we define it formally
in the next section. In the following dialogue, inspired by
[12], an agent a will ask an agent b for a resource (a nail),
needed to carry out a task (i.e., to hang a picture). Once
the request is refused, a asks b the reason why, with the
purpose of acquiring additional information and thus finding
an alternative solution to her goal.
Example 1
tell(a, b, request(give(nail)), 1)

tell(b, a, refuse(request(give(nail))), 2)

tell(a, b, challenge(refuse(request(give(nail)))), 3)

tell(b, a, justify(refuse(request(give(nail))), {not have(nail)}), 4)

�
In general, a dialogue is a sequence of alternative dialogue
moves, or performatives, where a performative is a message
in the form tell(Sender, Recipient, Subject, Time). Time, in
particular, is understood as a transaction time. The concept

of termination of a negotiation dialogue can be recovered
into the idea that at a certain point an agent makes a final
move [19]. Of course, the other agent is supposed to recog-
nize that such a move is intended to terminate the dialogue.
If no agent makes any final move, both agents could keep
exchanging messages, without getting to an end. Exam-
ple 2 shows a dialogue between two (particularly overpolite)
agents that keep exchanging greetings.
Example 2
tell(a, b, hello, 1)

tell(b, a, hello, 2)

tell(a, b, hello, 3)

. . . �
The situation of Example 2 could be due to the fact that
both agents’ programs force them to reply to an incoming
greeting with an equal greeting. We can imagine that loop
conditions of the like could unpredictably arise each time we
put together, in an open society, agents that were indepen-
dently programmed. An obvious solution to this problem
could be to force agents not to tell the same thing twice.
But this measure does not really solve the problem, as Ex-
ample 3 shows: agents could keep exchanging slightly differ-
ent messages, and still get stuck in a loop condition.
Example 3
tell(a, b, hello(1), 1)

tell(b, a, hello(2), 2)

tell(a, b, hello(3), 3)

. . . �
Then, we could think to introduce a more restrictive mea-
sure, e.g., based on message patterns, that prevents agents
from telling a message whose “pattern” is the same as a
previous one in the same dialogue.1 But this could result
in preventing agents from finding solutions (or agreements,
in the case of negotiation), that could be found otherwise.
Example 4 below shows a possibly successful dialogue that
would solve a resource reallocation problem (agent a obtains
a screw from b and therefore can execute a plan to achieve
her goal of hanging a picture). Such dialogue would not be
permitted if agent b was prevented from making the move
‘propose an exchange’ (such is the meaning of the promise
performative, that we inherit from [1]) twice.
Example 4
tell(a, b, request(give(nail)), 1)

tell(b, a, challenge(request(give(nail))), 2)

tell(a, b, justify(request(give(nail)), . . .), 3)

tell(b, a, promise(give(bluetac), . . .), 4)

tell(a, b, refuse(promise(give(bluetac), . . .)), 5)

tell(b, a, promise(give(screw), . . .), 6)

tell(a, b, accept(promise(give(screw), . . .)), 7) �
Still, unless we consider very generic (and therefore very
restrictive) patterns, the threat of non-termination remains.
Example 5 could evoke a familiar situation to those who
have spent some moments of their life dealing with small
children. . . In the example, the challenge performative, also
derived from [1], has the meaning of asking for a justification
of what the dialogue partner just said.
Example 5
tell(a, b, request(give(nail)), 1)

tell(b, a, challenge(request(give(nail))), 2)

tell(a, b, justify(request(give(nail)), . . .), 3)

tell(b, a, challenge(justify(request(give(nail)), . . .)), 4)

1the pattern could be, in this case: tell(a, b, hello(),),
where the underline indicates whatever ground expression.

. . . �
In the end, we realize intuitively what follows: the more
we reduce the set of dialogue moves that the agents can
exchange in the course of a dialogue, the more we reduce
the universe of reachable solutions of a negotiation problem.
We think that the choice about to which extent the dialogue
should be constrained to certain patterns must be left to the
system designer(s).

3. ABDUCTION AND NEGOTIATION
The dialogue framework that we are going to sketch in

this section is derived from [15]. It is composed of a knowl-
edge representation including an abductive logic program
(ALP), a language, a proof-procedure, and a communication
layer. Agents are provided with a suitable architecture, in-
cluding in particular a planner. The communication layer is
a shared blackboard where agents can post / retrieve mes-
sages. As far as the knowledge representation, we will only
say here that agents have a (declarative) representation of
goals G, beliefs B, and intentions I, i.e., plans to achieve
goals. Agents will access their beliefs by means of pred-
icates such as have(Resource), need(Resource), and in a
similar way to their intentions (intend(Intention)). The
purpose of negotiation is for an agent to obtain the missing
resources, while retaining the available ones that are neces-
sary for the plan in its current intention. As the focus of
the paper is on the termination issue, and for space limi-
tations, we will not describe the framework in detail here,
although we need to give some intuition on the abductive
proof-procedure adopted by the agents, in order to prove the
termination results of Section 4.

3.1 A negotiation framework
In its classical understanding, abduction is a reasoning

mechanism that can be used to generate a suitable explana-
tion to a certain observation or goal, based on an abductive
program. In general, an abductive program is expressed in
terms of a triple 〈P,A, IC〉, where P is a logic program, A
is a set of abducible predicates, i.e., open predicates which
can be used to form explaining sentences, and IC is a set
of integrity constraints. Given a goal g, abduction aims
at finding a set ∆ ⊆ A of abducible predicates that can
be supposed true and thus enlarge P , in order to entail g.
The adoption of automatic proof procedures such as that of
[6] or [8], supported by a suitable agent cycle such as for
instance the observe-think-act of [9], will implement a con-
crete concept of entailment with respect to knowledge bases
expressed in abductive logic programming terms. The proof
procedure is then executed within the agent cycle to produce
hypotheses (explanations) that are consistent with the agent
constraints, IC, when certain phases of the agent cycle are
reached. Constraints play a major role in abduction, since
they are used to drive the formulation of hypotheses and
prevent the procedure from generating wrong explanations
to goals. For this reason, abduction has been originally used
for diagnosis and expert systems.

In recent times, many different understandings of abduc-
tive reasoning have been conceived. Abduction has been
used, e.g., for planning and scheduling, where the ‘hypothe-
ses’ that can be made refer to task scheduling, and the con-
straints can be used, e.g., to prevent task overlapping and re-
source conflict. In an argumentation framework, abduction
has been proposed to build arguments out of a knowledge

base [7]. In [15], abduction has been used to model agent
dialogue, following an argumentative approach. In partic-
ular, the abducible hypotheses are dialogue performatives.
The abductive agent program is provided with dialogue con-
straints that are fired each time the agent is expected to pro-
duce a dialogue move, e.g., each time another agent sends
him a request for a resource. Such move is then produced
as a hypothesis that must be assumed true in order to keep
the knowledge base consistent. The agent knowledge is con-
sidered consistent if the agent replies to a partner’s moves,
according to the current status of her knowledge base. The
use of abduction in the agent dialogue context, as opposed to
other (less formal) approaches, has several advantages. One
of them is the possibility to determine properties of the dia-
logue itself; another is the 1-1 relationship holding between
specification and implementation, thanks to the operational
semantics of the adopted abductive proof-procedure.

In the following we will show a dialogue constraint, taken
from a very simple agent program:
Example 6
tell(X, a, request(give(R)), T) ∧ have(R, T)

⇒ tell(a, X,accept(request(give(R))), T + 1) �
Constraints here are expressed in terms of condition-action

rules, leading in this particular case from the perception of
another agent’s dialogue move (observation phase) to the
expression of a new dialogue move (action phase). For in-
stance, the first constraint of the example reads: ‘if agent a
receives a request from another agent, X, about a resource
R that a has, then a tells X that she (a) will accept the re-
quest’. Such rules are interpreted (think phase) by the IFF
procedure for abductive reasoning [6], framed in an observe-
think-act agent cycle [9].

3.2 IFF-terminating programs
In this paper, we will not make any concrete assump-

tions on the syntax of the language of the knowledge base
of agents, except for assuming that it contains notions of
literal, complement of sentences, true and false. Also, we
assume that such a language is equipped with a notion of
entailment, such that, for every ground literal in the lan-
guage, either the literal or its complement is entailed, and
such that no literal and its complement are entailed at the
same time.

The IFF [6] is a rewriting abductive proof-procedure con-
sisting of a number of inference rules. Two basic infer-
ence rules are unfolding (backward reasoning), and propa-
gation (forward reasoning). Implications are obtained by
repeatedly applying the inference rules of the proof proce-
dure to either an integrity constraint in the given program
(ALP), or to the result of rewriting negative literals not A as
A ⇒ false. We will not describe the proof-procedure in de-
tail here, but we will focus on the issue of proof termination,
and give a characterization of the class of IFF-terminating
programs, i.e., of those abductive logic programs for which
all IFF-trees for grounded queries are finite.

Intuitively, the reason why a program is not IFF-terminating
can be recovered into the presence of rules/constraints in the
program whose combination leads to infinite propagation or
unfolding. It is possible to identify three cases that can be
generalized.2 In the following, p and q represent literals.

2Here, for the sake of simplicity, we consider only ground

1) unfolding + unfolding
p ↔ q
q ↔ p

2) unfolding + propagation
p ↔ q
q ⇒ p

3) propagation + propagation
p ⇒ q
q ⇒ p

In all cases, p unfolds / propagates to q and vice versa, ad
infinitum. In order to characterize a class of programs that
terminate, we define the property of acyclicity, tailored to
the case of ALP in relationship to the IFF proof procedure
(IFF-acyclicity). In fact, if an ALP is IFF-acyclic, then it
is IFF-terminating. An ALP is IFF-acyclic if we can find a
level mapping || such that:

1. for every ground instance of every clause (if-definition)
in P, say A ← L1, . . . , Li, . . . , Ln, we have |A| > |Li|
(i.e., P is acyclic)

2. for every ground instance of every integrity constraint
in IC, say L1, . . . , Lj , . . . , Lm ⇒ A, we have:

• |Lj | > |A|
• if K is a negative literal, say not M in the body

of the integrity constraint, then |Lj | > |M |
The presence of such level mapping ensures that the situ-

ations above do not occur in an agent program. We will call
IFF-acyclic programs acceptable: in fact, we cannot guaran-
tee termination if an agent gets stuck in an infinite branch
of the derivation tree, producing therefore no dialogue move
at all. In the following, we will always require that the agent
programs are acceptable.

3.3 Dialogues
Let us now formally define what we intend by dialogue. In

the sequel, capital letters stand for variables and lower-case
letters stand for ground terms.

Definition 1 (performative or dialogue move)
A performative or dialogue move is an instance of a schema of
the form tell(X, Y,Subject, T), where X is the utterer and
Y is the receiver of the performative, and T is the time when
the performative is uttered. Subject is the content of the
performative, expressed in some given content language.

Definition 2 (language for negotiation)
A language for negotiation L is a (possibly infinite) set of
(possibly non ground) performatives. For a given L, we de-
fine two (possibly infinite) subsets of performatives, I(L),
F(L) ⊆ L, called respectively initial moves and final moves.

An example of a language for negotiation is the following,
taken from [15]:
L1 = { tell(X, Y, request(give(Resource)), T),

tell(X, Y,accept(Move), T),

tell(X, Y, refuse(Move), T),3

programs, thus assuming that P and IC have already been
instantiated. The results could be generalized to non-ground
programs.
3The language provides some syntactical sugar for con-
structing dialogue sequences. For instance, one can
write tell(X, Y, refuse(request(give(Res))), T) instead of
tell(X, Y, refuse(tell(Y, X, request(give(Res)), T − 1)), T)

tell(X, Y, challenge(Move), T),

tell(X, Y, justify(Move, Support), T),

tell(X, Y,promise(give(Resource),

give(Resource′)), T) }
The initial and final moves of L1 are:
I(L1) = {tell(X, Y, request(give(Resource)), T)}
F(L1) = { tell(X, Y,accept(request(give(Resource))), T),

tell(X, Y,accept(promise(give(Resource),

give(Resource′))), T),

tell(X, Y, refuse(request(give(Resource))), T),

tell(X, Y, refuse(promise(give(Resource),

give(Resource′))), T) }.
As in this paper we are interested in negotiation for the

exchange of resources, we will assume that there always ex-
ists a request move in the initial moves of any language for
negotiation.

Definition 3 (agent system)
An agent system is a finite set A, where each x ∈ A is a
ground term, representing the name of an agent, equipped
with a knowledge base K(x).

We will assume that in an agent system, the agents share
a common language for negotiation as well as a common
content language. For a given agent x ∈ A, where A is
equipped with L, we define the sets Lin(x), of all performa-
tive schemata of which x is the receiver, but not the utterer;
and Lout(x), of all performative schemata of which x is the
utterer, but not the receiver. Note that we do not allow for
agents to utter performatives to themselves. In the sequel,
we will often omit x, if clear from the context, and simply
write Lin and Lout. In our ALP framework, outgoing per-
formatives are abducibles, which implies that no definition
for them is allowed. In other words, there does not exist a
rule in the agent program that contains an outgoing perfor-
mative in the head.

Negotiation protocols can be specified by sets of ‘dialogue
constraints’, defined as follows:

Definition 4 (dialogue constraint)
Given an agent system A, equipped with a language for
negotiation L, and an agent x ∈ A, a dialogue constraint
for x is a (possibly non-ground) if-then rule of the form:
p(T) ∧ C ⇒ p̂(T + 1), where

• p(T) ∈ Lin(x) and p̂(T + 1) ∈ Lout(x),

• the utterer of p(T) is the receiver of p̂(T + 1), and

• C is a conjunction of literals in the language of the
knowledge base of x.4

Any variables in a dialogue constraint are implicitly univer-
sally quantified from the outside. The performative p(T) is
referred to as the trigger, p̂(T + 1) as the next move and C
as the condition of the dialogue constraint.

The intuitive meaning of a dialogue constraint p(T)∧C ⇒
p̂(T + 1) of agent x is as follows: if at a certain time T in
a dialogue some other agent y utters a performative p(T),
then the corresponding instance of the dialogue constraint is
triggered and, if the condition C is entailed by the knowledge
base of x, then x will utter p̂(T + 1), with y as receiver, at

4Note that C in general might depend on several time points,
possibly but not necessarily including T ; therefore we will
not indicate explicitly any time variable for it.

the next time T + 1. This behaviour of dialogue constraints
can be achieved by employing an automatic proof procedure
such as that of [6] within an observe-think-act agent cycle
[9], as we said before. The execution of the proof procedure
within the agent cycle produces dialogue moves immediately
after a dialogue constraint is fired. A concrete example of a
dialogue constraint allowing an agent x to accept a request
is that of Example 6, where the trigger is tell(Y, a, request(
give(R)), T), the condition is have(R, T), and the next
move is tell(a, Y, accept(request(give(R))), T + 1).

We will refer to the set of dialogue constraints associated
with an agent x ∈ A as S(x), and we will call it the agent
program of x. We will often omit x if clear from the context
or unimportant. In order to be able to generate a dialogue,
two agent programs must be properly combined, that exhibit
two important properties: determinism and exhaustiveness.
We say that an agent program is deterministic and exhaus-
tive if it generates exactly one next move p̂(T +1) for a given
trigger p(T), and a condition C, except when p(T) is a fi-
nal move. We call P the space of acceptable, exhaustive,
and deterministic agent programs. Some examples of such
programs can be found in [14].

Definition 5 (dialogue)
A dialogue between two agents x and y is a set of ground
performatives, {p0, p1, . . . }, such that, for some given t ≥ 0:

1. ∀ i ≥ 0, pi is uttered at time t + i;

2. ∀ i ≥ 0, if pi is uttered by agent x (viz. y), then pi+1

(if any) is uttered by agent y (viz. x);

3. ∀ i > 0, pi can be uttered by agent α ∈ {x, y} only
if there exists a (grounded) dialogue constraint pi−1 ∧
C ⇒ pi ∈ S(α) such that K(α) ∧ pi−1 entails C.

By condition 1, a dialogue is in fact a sequence of per-
formatives. By condition 2, agents utter alternatively in a
dialogue. By condition 3, dialogues are generated by the di-
alogue constraints, together with the given knowledge base
to determine whether the condition of triggered dialogue
constraints is entailed. A dialogue {p0, p1, . . . pm}, m ≥ 0,
is terminated if pm is a ground final move, namely pm is a
ground instance of a performative in F(L).

Intuitively, a dialogue should begin with an initial move,
according to the given language for negotiation. The kind of
dialogue that is relevant to our purposes is that started with
a request of a resource R. In the knowledge representation
that we chose in the reference framework, we call missing(
Rs) the set of resource that an agent is missing before she
can start executing an intention I. A request dialogue will
be initiated by an agent x whose intention I contains R in
its set of missing resources.

Definition 6 (request dialogue)
A request dialogue with respect to a resource R and an in-
tention I of agent x is a dialogue {p0, p1, p2, . . . } between x
and some agent y ∈ A such that, for some t ≥ 0,

• p0 = tell(x, y, request(give(R)), t),

• missing(Rs) ∈ I and

• R ∈ Rs.

As a consequence of a dialogue, the agent’s intentions
might change. According to the way intentions are modi-
fied, a classification of types of terminated request dialogues
is given in [14]. In the sequel, we will assume that a termi-
nated request dialogue, for a given resource R and intention
I, returns an intention I′.

4. ENSURING TERMINATION
We can consider the dialogue as a particular IFF deriva-

tion, obtained by interleaving resolution steps made by the
two agents. Therefore, we can extend the termination re-
sults of 3.2 to dialogue programs.

4.1 Terminating dialogue programs
We argue that the possible reasons for an infinite deriva-

tion tree are still, mutatis mutandis, those of Section 3.2.
Let us consider again the three cases, and see if they can oc-
cur when the knowledge is distributed between two agents,
a and b. We put on the left side of each rule / constraint the
name of the agent whose program contains it. We assume
that the agents’ programs are acceptable.

1) unfolding + unfolding
[a] p ↔ q
[a] q ↔ p

2a) unfolding + propagation
[a] p ↔ q
[a] q⇒ p

2b) unfolding + propagation
[a] p ↔ q
[b] q⇒ p

3) propagation + propagation
[a] p(T) ∧ Cp[T] ⇒ q(T + 1)
[b] q(T) ∧ Cq[T] ⇒ p(T + 1)

(1) and (2a) are both forbidden by the program accept-
ability requirement. (2b) does not represent a possible cause
of non-termination:5 since q is not abducible, therefore it is
not possible to communicate it to b. As for the third case, let
us consider, as p(T), tell(b, a, hello, T), and as q(T), tell(a,
b, hello, T). This is apparently a threat for non-termination
(see Example 2).

We could therefore introduce some restrictions to the di-
alogue protocols, in order to prevent such situation, at the
cost of a reduction of the space of reachable solutions, as
explained before by examples.

4.2 Three degrees of restrictions
In order to try and prevent propagation from causing infi-

nite dialogue move generation (case 3), we should make sure
that the same integrity constraint of an agent program is not
triggered infinitely many times. To this purpose, we define
a transformation T that maps an element S ∈ P of the
domain of (acceptable, exhaustive and deterministic) agent
programs into another element, T (S) in the same domain.
T is defined as follows:

Definition 7 (Agent program transformation)
Given a language L, an agent x and an agent program
S(x) ∈ P, the transformation T with respect to a given

5The only way to pass the computation thread from an agent
a to her dialogue partner b is through an abducible repre-
senting a dialogue move in the head of one of a’s dialogue
constraints.

set of literals (restriction) pcheck(T), T (pcheck(T)) : P → P
is defined in the following way (f(T + 1) ∈ F(L)):

∀ic ∈ S(x), ic = p(T) ∧ C[T] ⇒ p̂(T + 1),

T (ic)
def
=

8>><>>:
p(T) ∧ C[T] ∧ not pcheck(T) ⇒ p̂(T + 1)
p(T) ∧ C[T] ∧ pcheck(T) ⇒ f(T + 1)

if p̂(T + 1) ∈ F(L);
ic, otherwise.

Therefore, there is a 1-1 correspondence between a re-
striction pcheck(T) and a transformation function T . Pro-
grams that are elements of the co-domain of T will be called
restricted according to T . If an acceptable program is re-
stricted according to T , when the partner agent produces a
move triggering a dialogue constraint whose condition and
restriction are both verified, the agent will jump to a final
state, thus interrupting the dialogue. It is easy to prove
that, given a transformation function T associated with a
restriction pcheck(T), if the pcheck(T) is ground for all possi-
ble instantiations of p(T) ∧ C[T], T transforms exhaustive
and deterministic programs into exhaustive and determinis-
tic programs, i.e., T maps from P to P.

The choice of the restriction can be made in several ways;
we will define here three different kinds of restrictions, that
formally reflect the considerations of Section 4.

(i) The check is made on ground instances of predicates,

(ii) The check is made on predicate patterns,

(iii) The check is made against an ordering.

Let us consider them one by one. Case (i), check made
on ground instances of predicates, restricts the applicability
of a dialogue constraint by preventing it from being trig-
gered twice by the same instance of dialogue move at differ-
ent times. This is in line with the characterization of dia-
logue given in [15], and prevents situations of infinite ‘pure’
loop, such as the one in Example 2, generated by the con-
straint tell(X, a, hello, T) ⇒ tell(a, X, hello, T +1) of agent
a. The restriction in this case could be:

p
(i)
check(T) = tell(X, a, hello, T1) ∧ T1 < T

This does not guarantee termination in a finite number of
steps, though, as shown by Example 3. The check on pred-
icate patterns could be implemented in that case by the re-
striction

p
(ii)
check(T) = tell(X, Y, hello(), T1) ∧ T1 < T

The case of check made on predicate patterns is a more
restrictive policy, that has the already mentioned drawbacks
and limitations. In particular, the situation of Example 5
could be caused by an agent that contains in her program
the following dialogue constraint: tell(b, a, Anything, T) ⇒
tell(a, b, challenge(Anything), T + 1).

A solution to this could be to establish an ordering among
the dialogue constraints of an agent. Before going on, let
us point out that the problem of non-termination is of the
agent that starts the negotiation dialogue, although our re-
sults are independent on this. In fact, if it is true that the
dialogue can be terminated by either agent, on the other
hand, broadly speaking, the one that started it is the one
that we expect to be waiting for a reply, and not vice versa.

Now, the intuition is that the agent that started the ne-
gotiation process, let us say a, can ideally draw a tree of

request

accept

refuse

challenge
justify

refuse

promise

refuse

accept

request

accept

refuse

challenge
justify

refuse

promise

refuse

accept

Figure 1: Dialogue tree.

possible dialogues, that has as a root his initial move, let us
say, tell(a, b, request(. . .), 0). A correct tree could be drawn
if a knew b’s program exactly, which is not an assumption
we want to make. However, in first approximation, a can
assume that b has the same constraints as she has. Then, a
can generate a tree that has as nodes the possible dialogue
moves, and as branches the integrity constraints that lead
from one move to another one. An example of such tree,
for the language L1 and the negotiation program defined in
[15], is that of Figure 1.

The purpose of drawing a tree, that goes from an initial
move to some possible final moves, is to have an ordering
function defined on the domain of possible dialogue moves,
and consider an ongoing dialogue valid as far as the tree
or graph is explored in one direction (the one that leads to
final moves). It is important to notice that not all agent
programs in P allow us to draw a tree: in order to do that,
such ordering function must exist. We call the existence
of such function acyclicity, as we did in Section 3.2 in the
case of IFF-terminating programs. If such function does
not exist, it is not possible to adopt policy (iii), and it is
easy to imagine that a dialogue between two agents having
both a non-acyclic program will not likely terminate. More
formally, an instance of ordering function, that we call (rank
function) is defined as follows:

Definition 8 (Rank function)
A rank function, mapping from a language L to the set of
natural numbers N, rank : L → N, is procedurally defined
for a given agent program S ∈ P as follows in two steps.
First we label all the performatives of L, by applying one of
the following rules, until no rule produces any change in the
labeling:

• for all p ∈ L that have not been labeled yet, if p ∈
initial(L), then label(p) = 0;

• for all p ∈ L that have not been labeled yet, if p /∈
initial(L) and ∃ic ∈ S : ic = p ∧ C ⇒ (p̄), and
label(p̄) = r, then label(p) = r + 1

• for all p ∈ L that have already been labeled, let label(p)
be r. Then, if ∃ic ∈ S : ic = (p̄) ∧ C ⇒ p such that
label(p̄) ≤ r, then label(p̄) = r + 1

If it is not possible to apply such labeling to the language
(i.e., if it is not possible to complete this procedure in finitely
many steps), it means that the program is not acyclic. Oth-
erwise, after labeling the language, let R be maxp∈L label(p)
(R is finite). Then, rank is defined as rank(p) = R −
label(p).

Once a rank function rank(p, n), n ∈ N is defined for all
p ∈ L, the restriction turns out:

p
(iii)
check(T) = rank(p(T), R) ∧ q(T1) ∧ T1 < T ∧

rank(q(T1), R1) ∧ R1 ≤ R

That is, a move of higher rank has been made after a move of
lower rank. It is worth to notice that the introduction of the
restrictions does not modify the existing language ranking.

We will call this policy check against an ordering. It is
more restrictive than the previous ones, since it does not
allow jumping backwards from one branch to another one,
and, again, some more possibly successful dialogues could
be rejected. On the other hand, if applied to acceptable, ex-
haustive, and deterministic programs, it is enough to ensure
termination, as stated by the following theorem:
Theorem 1 (Finite termination of a dialogue with check
against an ordering) Let a and b be two agents provided
with acceptable, exhaustive, and deterministic programs. Let
a’s program be restricted according to a check against an
ordering policy. Therefore, a dialogue d between a and b
will terminate after a finite number of moves. In particular,
if R is the maximum rank of a dialogue move, d will have at
most R + 2 moves.
Proof The proof for such theorem is given inductively. Given
a dialogue d = {p1, p2, . . . , pj , . . . }, between agents a and b,
and started by a, let R be the maximum rank of a dia-
logue move in a’s program. By definition of rank, all nodes
ranked 0 must be leaves, and therefore final moves, while all
the leaves ranked R are initial moves. Then we have, ∀pj :

• if pj is final, the dialogue is terminated;

• if pj is not final, with rank(pj) = rj > 0, and it is
uttered by b (i.e., j is even), then pj+1 must be com-
puted by a, and will be either a final move, or will be
ranked rank(pj+1) = rj − 1;

• if pj is not final, with rank(pj) = rj > 0, and it is ut-
tered by a (i.e., j is odd), then pj+1 must be computed
by b, and it will be either a final move, or a move
pj+1 ranked rank(pj+1). If rank(pj+1) ≥ rank(pj),
then the next move pj+2 will be final and the dia-
logue will terminate; otherwise pj+2 will be ranked
rank(pj+2) = rank(pj+1)− 1 ≤ rank(pj)− 2;

• rank(p1) ≤ R by definition.

Therefore, each move pj is ranked r, with r ≤ R + 1 − j.
Now, if in the dialogue there are two moves with the same
rank, the next move will be the last one. Since there can-
not be more than two moves with the same rank, and the
maximum rank is R, the maximum number of moves com-
puted in a dialogue is R + 2. For all non-final move pj

uttered by either agent, there exists a (unique) next move
pj+1, since both agent programs are exhaustive and deter-
ministic. Moreover, the reasoning required by either party
to compute a dialogue move terminates in a finite number
of steps, since both programs are acceptable. Therefore, the
dialogue terminates in at most R + 2 moves.

4.3 Termination of dialogue sequences
We can easily extend this termination result to the case

of dialogue sequences, formally defined in [14], aimed at col-
lecting all the (finitely many) missing resources, missing(I),

with respect to an intention I, whose cost is defined as the
cardinality of missing(I). We do not have the space here to
formally describe the dialogue sequence, as we did with dia-
logues; still we would like to give the intuition, and a sketchy
proof of the second theorem that we are going to enunciate
in the following. Dialogue sequences are defined such that
an agent cannot ask the same resource twice to the same
agent, within the same sequence. Since dialogues can mod-
ify the agents’ intentions, a dialogue sequence {d1, . . . , dn}
is associated with a series of intentions {I0, . . . , In}, where
∀i, 1 ≤ i ≤ n, Ii is the agent intention resulting from di,
and I0 = I is the ‘initial’ intention.
Definition 9 (Termination of a sequence of dialogues)
A sequence of dialogues s(I) with respect to an initial inten-
tion Ia of an agent a is terminated when, given that In is the
intention after dn, there exists no possible request dialogue
with respect to In that a can start.

This could be due to two reasons: either after s there are
no more missing resources in the intention, i.e. cost(In) = 0,
or cost(In) > 0 and in a’s program there is no constraint
that can start a request.

In order to ensure termination, we could program the
agent such that after every single dialogue the set of missing
resources rather shrinks than grows in size: ∀i > 0, cost(Ii) >
(Ii−1). If an agent program is such that a dialogue can only
decrease the cost of an intention, we call such agent self-
interested rational. In that case, given a system of n + 1
agents and an intention I, the length length(s(I)) of a se-
quence s(I) of dialogue with respect to an intention I, i.e.,
the number of dialogues in s(I), is bounded by the prod-
uct n · cost(I). It is possible to prove that termination is a
property that holds for self-interested rational agents whose
programs are restricted according to a check against an or-
dering policy:
Theorem 2 (Termination of a sequence of dialogues for a
restricted agent program) Let A be a system of n+1 agents,
and s(I) be a sequence of dialogues with respect to an ini-
tial intention I of a self-interested rational agent a ∈ A. Let
the agent programs be acceptable, exhaustive, determinis-
tic, and in particular let a’s program be restricted according
to a check against an ordering policy. Then s(I) will ter-
minate before finitely many dialogue moves. In particular,
if R is the maximum rank of a dialogue move, according
to a’s ranking function, s(I) will terminate after at most
n · cost(I) · (R + 2) dialogue moves.
Proof (sketch) As the number of dialogues in s(I) is bounded
by the product n · cost(I), and each dialogue is terminated
in at most R+2 moves, the whole sequence of dialogues will
terminate, and will terminate after at most n·cost(I)·(R+2)
dialogue moves.6

In the end, we would like to make a parallel between the
concept of restriction introduced to ensure the termination
of a (negotiation) dialogue and the self-interested rationality
assumption of Theorem 2. Indeed, self-interested rationality
could be considered a limitation, in that it reduces the space
of agent programs. It reflects into a reduction of the space
of the achievable solutions of a resource reallocation prob-
lem (it is easy to imagine situations where two negotiating
agents get stuck in a ‘local maximum’ because none of them

6It could easily be proven that the bound is less than that,
but it does not seem to make a significant difference, there-
fore we will consider as a reference this overestimating, still
easy to understand and to use, upper bound.

wants to give away a resource). There are some results in
this respect in [16]. Due to such reduction, a weak notion of
completeness has been introduced in [14].

5. CONCLUSION
In this work, we have dealt with the problem of termi-

nation in dialogue-based agent negotiation. Building on an
existing dialogue framework, where the course of dialogue is
determined by rules and constraints embodied in the agents’
programs, we introduced several syntactic transformation
rules that can modify those programs towards a better ro-
bustness. Two results have been proven, determining an
upper limit to the maximum length of a dialogue and of
a sequence of dialogues, measured in terms of number of
exchanged messages. Such results reflect an existing trade-
off between the need to ensure termination in the negotia-
tion process and the loss in terms of reachable states in the
universe of possible solutions to the problems addressed by
negotiation.

Our work relates to that done on loop checking [2], where
the idea is to prune LSD-trees in the derivation based on
a logic program, and at the same time minimize the loss
in terms of reached solutions. Recent work has been done
on abduction in multi-agent systems from the speculative
computation point of view [17]. In [19], the authors con-
sider the use of logic-based languages for negotiation, and
identify two important computational problems in this re-
spect: the problem of determining if an agreement has been
reached in a negotiation, and the problem of determining if
a particular negotiation protocol will lead to an agreement.
In [11], the authors present some results about protocols,
explore equivalence properties among protocols, and study
the relationship among finite and infinite dialogues. Both
that and our work aim at aiding the design and evalua-
tion of protocols. While our work is grounded on an oper-
ationally defined agent framework, and therefore proposes
a directly implementable mechanism for ensuring dialogue
termination, [11] abstracts away from any concrete agent
framework and suggests a mathematical theory of dialogue
game protocols in which to study the properties of several
protocols.

In the future, we plan to extend our results to other kinds
of dialogues, and to better investigate the applicability of
our mechanisms within existing standards for agent com-
munication languages. We would also like to provide the
agents with the ability to reason upon arguments and jus-
tifications, and to study if this could be a viable option for
increasing the space of reachable solutions while ensuring
dialogue termination.

6. ACKNOWLEDGMENTS
This work was partially supported by the SOCS project,

IST-2001-32530. I would like to thank Iannis Xanthakos for
the inspiring discussions and explanations about termina-
tion for IFF abductive logic programs. Also many thanks to
Fariba Sadri and Francesca Toni for fruitful conversations,
and to Paola Mello, Zeynep Kızıltan and the anonymous
referees for their precious comments on this paper.

7. REFERENCES
[1] L. Amgoud, S. Parsons, and N. Maudet. Arguments,

dialogue and negotiation. In W. Horn, editor, Proc.

14th ECAI, Berlin, Germany. IOS Press, August 2000.

[2] R. N. Bol. Loop Checking in Logic Programming. PhD
thesis, CWI Tract 112, Stichting Mathematisch
Centrum, Amsterdam, 1995.

[3] P. Davidsson. Categories of artificial societies. In
A. Omicini, P. Petta, and R. Tolksdorf, editors,
Engineering Societies in the Agents World II, LNAI
2203, pages 1–9. Springer-Verlag, Dec. 2001.

[4] F. Dignum, B. Dunin-Keplicz, and R. Verbrugge.
Dialogue in team formation. In F. Dignum and
M. Greaves, editors, Issues in Agent Communication,
LNCS 1916, pages 264–280. Springer-Verlag, 2000.

[5] J. Dix, F. Sadri, and K. Satoh, editors. Computational
Logic and Multi Agency, Special Issue of the AMAI.
Baltzer Science Publishers, to appear.

[6] T. H. Fung and R. A. Kowalski. The IFF proof
procedure for abductive logic programming. Journal
of Logic Programming, 1997.

[7] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of
abduction in logic programming. Handbook of Logic in
AI and Logic Programming, 5:235–324, 1998.

[8] A. C. Kakas and P. Mancarella. On the relation
between Truth Maintenance and Abduction. In
T. Fukumura, editor, Proc. PRICAI-90, Nagoya,
Japan, pages 438–443, 1990.

[9] R. A. Kowalski and F. Sadri. From logic programming
to multi-agent systems. AMAI, 1999.

[10] S. Kraus, K. Sycara, and A. Evenchik. Reaching
agreements through argumentation; a logical model
and implementation. AIJ, 104:1–69, 1998.

[11] P. McBurney and S. Parsons. A geometric semantics
for dialogue game protocols for autonomous agent
interactions. In UKMAS, Oxford, UK, Dec. 2001.

[12] S. Parsons, C. Sierra, and N. R. Jennings. Agents that
reason and negotiate by arguing. Journal of Logic and
Computation, 8(3):261–292, 1998.

[13] S. Rochefort, F. Sadri, and F. Toni, editors. Proc.
Int’l. Work. on Multi-Agent Systems in Logic
Programming, ICLP’99, Las Cruces, NM. Nov. 1999.

[14] F. Sadri, F. Toni, and P. Torroni. Dialogues for
negotiation: agent varieties and dialogue sequences. In
Proc. ATAL’01, Seattle, WA, LNAI, Intelligent Agents
VIII (to appear). Springer Verlag, 2001.

[15] F. Sadri, F. Toni, and P. Torroni. Logic agents,
dialogues and negotiation: an abductive approach. In
Proc. AISB’01 Convention, York, UK, March 2001.

[16] T. Sandholm. Negotiation among Self-Interested
Computationally Limited Agents. Computer science,
Univ. of Massachusetts at Amherst, Sept. 1996.

[17] K. Satoh and K. Yamamoto. Speculative computation
with multi-agent belief revision. In Proceedings
AAMAS, Bologna, Italy, 2002 (to appear).

[18] D. N. Walton and E. C. W. Krabbe. Commitment in
Dialogue: Basic Concepts of Interpersonal Reasoning.
State University of New York Press, Albany, NY, 1995.

[19] M. J. Wooldridge and S. Parsons. Languages for
negotiation. In W. Horn, editor, Proc. 14th ECAI,
Berlin, Germany. IOS Press, August 2000.

